मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता १२

Find the differential equation of the family of circles passing through the origin and having their centres on the x -axis - Mathematics

Advertisements
Advertisements

प्रश्न

Find the differential equation of the family of circles passing through the origin and having their centres on the x-axis

बेरीज

उत्तर

Given the circles centre on x-axis and the circle is passing through the origin.

Let it be (r, 0) and its radius r

Equation of the circle is

(x – a)2 + (y – b)2 = r2

(x – r)2 + (y – 0)2 = r2

x2 – 2xr + r2 + y2 = r2

x2 – 2xr + y2 = r2 – r2

x2 – 2xr + y2 = 0  ........(1)

Differentiating equation (1) with respect to ‘x’, we get

2x – 2r + 2y `("d"y)/("d"x)` = 0 dx

2x + 2y `("d"y)/("d"x)` = 2r

`x + y ("d"y)/("d"x)` = r

Substituting r value in equation (1), we get

`x^2 - 2x(x + y ("d"y)/("d"x)) + y^2` = 0

`x^2 - 2x^2 - 2xy  ("d"y)/("d"x) + y^2` = 0

`- x^2 - 2xy ("d"y)/("d"x) + y^2` = 0

Multiply by '_', we et

`x^2+ 2xy ("d"y)/("d"x) - y^2` = 0

Which is a required differential equation.

shaalaa.com
Formation of Differential Equations
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Ordinary Differential Equations - Exercise 10.3 [पृष्ठ १५४]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
पाठ 10 Ordinary Differential Equations
Exercise 10.3 | Q 3 | पृष्ठ १५४

संबंधित प्रश्‍न

Obtain the differential equation by eliminating the arbitrary constants from the following equation:

(y - a)2 = 4(x - b)


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = c1e2x + c2e5x 


Find the differential equation all parabolas having a length of latus rectum 4a and axis is parallel to the axis.


In the following example verify that the given expression is a solution of the corresponding differential equation:

y = `(sin^-1 "x")^2 + "c"; (1 - "x"^2) ("d"^2"y")/"dx"^2 - "x" "dy"/"dx" = 2`


In the following example verify that the given expression is a solution of the corresponding differential equation:

y = e-x + Ax + B; `"e"^"x" ("d"^2"y")/"dx"^2 = 1`


For the following differential equation find the particular solution satisfying the given condition:

`(e^y + 1) cos x + e^y sin x. dy/dx = 0,  "when" x = pi/6,` y = 0


Choose the correct option from the given alternatives:

The differential equation of y = `"c"^2 + "c"/"x"` is


Choose the correct option from the given alternatives:

`"x"^2/"a"^2 - "y"^2/"b"^2 = 1` is a solution of


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = a sin (x + b)


Find the particular solution of the following differential equation:

(x + y)dy + (x - y)dx = 0; when x = 1 = y


Select and write the correct alternative from the given option for the question

Solution of the equation `x  ("d"y)/("d"x)` = y log y is


Find the general solution of `("d"y)/("d"x) = (1 + y^2)/(1 + x^2)`


Find the differential equation of family of all ellipse whose major axis is twice the minor axis


Find the differential equation by eliminating arbitrary constants from the relation y = (c1 + c2x)ex 


Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0


Find the differential equation corresponding to the family of curves represented by the equation y = Ae8x + Be 8x, where A and B are arbitrary constants


Find the differential equation of the curve represented by xy = aex + be–x + x2


The differential equation of all circles passing through the origin and having their centres on the X-axis is ______.


If 2x = `y^(1/m) + y^(-1/m)`, then show that `(x^2 - 1) (dy/dx)^2` = m2y2


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×