Advertisements
Advertisements
प्रश्न
Choose the correct option from the given alternatives:
`"x"^2/"a"^2 - "y"^2/"b"^2 = 1` is a solution of
पर्याय
`("d"^2"y")/"dx"^2 + "yx" + ("dy"/"dx")^2 = 0`
`"xy"*("d"^2"y")/"dx"^2 + "x"("dy"/"dx")^2 - "y" "dy"/"dx" = 0`
`"y" ("d"^2"y")/"dx"^2 + 2 ("dy"/"dx")^2 + "y" = 0`
`"xy" "dy"/"dx" + "y" ("d"^2"y")/"dx"^2 = 0`
उत्तर
`"xy"*("d"^2"y")/"dx"^2 + "x"("dy"/"dx")^2 - "y" "dy"/"dx" = 0`
Hint:
`"x"^2/"a"^2 - "y"^2/"b"^2 = 1` .....(1)
∴ `1/"a"^2 xx "2x" - 1/"b"^2 xx "2y" "dy"/"dx" = 0`
∴ `"x"/"a"^2 - "y"/"b"^2 "dy"/"dx" = 0` ....(2)
and `1/"a"^2 xx 1 - 1/"b"^2 ["y" ("d"^2"y")/"dx"^2 + ("dy"/"dx")^2] = 0` ....(3)
Equations (1), (2) and (3) are consistent
∴ `|("x"^2, - "y"^2, 1),("x", -"y" "dy"/"dx", 0),(1, -["y" ("d"^2"y")/"dx"^2 + ("dy"/"dx")^2], 0)| = 0`
∴ `"xy"*("d"^2"y")/"dx"^2 + "x"("dy"/"dx")^2 - "y" "dy"/"dx" = 0`
APPEARS IN
संबंधित प्रश्न
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
x3 + y3 = 4ax
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = c1e2x + c2e5x
Find the differential equation all parabolas having a length of latus rectum 4a and axis is parallel to the axis.
In the following example verify that the given expression is a solution of the corresponding differential equation:
y = `"a" + "b"/"x"; "x" ("d"^2"y")/"dx"^2 + 2 "dy"/"dx" = 0`
Solve the following differential equation:
`"dy"/"dx" = (1 + "y")^2/(1 + "x")^2`
Solve the following differential equation:
`"sec"^2 "x" * "tan y" "dx" + "sec"^2 "y" * "tan x" "dy" = 0`
Solve the following differential equation:
cos x . cos y dy − sin x . sin y dx = 0
Solve the following differential equation:
`2"e"^("x + 2y") "dx" - 3"dy" = 0`
For the following differential equation find the particular solution satisfying the given condition:
`y(1 + log x) dx/dy - x log x = 0, y = e^2,` when x = e
Reduce the following differential equation to the variable separable form and hence solve:
`cos^2 ("x - 2y") = 1 - 2 "dy"/"dx"`
Solve the following differential equation:
(x2 + y2)dx - 2xy dy = 0
Choose the correct option from the given alternatives:
The differential equation of all circles having their centres on the line y = 5 and touching the X-axis is
Choose the correct option from the given alternatives:
The solution of `"dy"/"dx" = ("y" + sqrt("x"^2 - "y"^2))/"x"` is
The integrating factor of linear differential equation `x dy/dx + 2y = x^2 log x` is ______.
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
`"y"^2 = "a"("b - x")("b + x")`
In the following example verify that the given function is a solution of the differential equation.
`"xy" = "ae"^"x" + "be"^-"x" + "x"^2; "x" ("d"^2"y")/"dx"^2 + 2 "dy"/"dx" + "x"^2 = "xy" + 2`
In the following example verify that the given function is a solution of the differential equation.
`"x"^2 = "2y"^2 log "y", "x"^2 + "y"^2 = "xy" "dx"/"dy"`
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
(y - a)2 = b(x + 4)
Solve the following differential equation:
x dy = (x + y + 1) dx
Find the particular solution of the following differential equation:
`("x + 2y"^2) "dy"/"dx" = "y",` when x = 2, y = 1
Find the particular solution of the following differential equation:
y(1 + log x) = (log xx) `"dy"/"dx"`, when y(e) = e2
Select and write the correct alternative from the given option for the question
Solution of the equation `x ("d"y)/("d"x)` = y log y is
Select and write the correct alternative from the given option for the question
The solution of `("d"y)/("d"x)` = 1 is
Find the differential equation of family of lines making equal intercepts on coordinate axes
Find the general solution of `("d"y)/("d"x) = (1 + y^2)/(1 + x^2)`
Find the differential equation by eliminating arbitrary constants from the relation y = (c1 + c2x)ex
The differential equation having y = (cos-1 x)2 + P (sin-1 x) + Q as its general solution, where P and Q are arbitrary constants, is
Find the differential equation of the family of all non-horizontal lines in a plane
The differential equation representing the family of parabolas having vertex at origin and axis along positive direction of X-axis is ______.
If m and n are respectively the order and degree of the differential equation of the family of parabolas with focus at the origin and X-axis as its axis, then mn - m + n = ______.
Solve the following differential equation:
`xsin(y/x)dy = [ysin(y/x) - x]dx`
The differential equation representing the family of ellipse having foci either on the x-axis or on the y-axis centre at the origin and passing through the point (0, 3) is ______.
The differential equation of the family of circles touching Y-axis at the origin is ______.
The differential equation of all parabolas having vertex at the origin and axis along positive Y-axis is ______.
Solve the differential equation
cos2(x – 2y) = `1 - 2dy/dx`
If 2x = `y^(1/m) + y^(-1/m)`, then show that `(x^2 - 1) (dy/dx)^2` = m2y2
Form the differential equation whose general solution is y = a cos 2x + b sin 2x.