मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Solve the following differential equation: x dy = (x + y + 1) dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve the following differential equation:

x dy = (x + y + 1) dx

बेरीज

उत्तर

x dy = (x + y + 1) dx

∴ `"dy"/"dx" = ("x + y + 1")/"x" = ("x + 1")/"x" + "y"/"x"`

∴ `"dy"/"dx" - 1/"x" * "y" = ("x + 1")/"x"`   ....(1)

This is the linear differential equation of the form

`"dy"/"dx" + "Py" = "Q",` where P = `- 1/"x" and "Q" = ("x + 1")/"x"`

∴ I.F. = `"e"^(int "P dx") = "e"^(int - 1/"x" "dx")`

`= "e"^(- log "x") = "e"^(log (1/"x")) = 1/"x"`

∴ the solution of (1) is given by

`"y" * ("I.F.") = int "Q" * ("I.F.")"dx" + "c"`

∴ `"y"*1/"x" = int ("x + 1")/"x" xx 1/"x" "dx" + "c"`

∴ `"y"/"x" = int ("x + 1")/"x"^2 "dx" + "c"`

∴ `"y"/"x" = int (1/"x" + 1/"x"^2) "dx" + "c"`

∴ `"y"/"x" = int 1/"x" "dx" + int "x"^-2 "dx" + "c"`

∴ `"y"/"x" = log |"x"| + "x"^-1/-1 + "c"`

∴ y = x log x - 1 + cx

This is the general solution.

shaalaa.com

Notes

The answer in the textbook is incorrect.

Formation of Differential Equations
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Differential Equations - Miscellaneous exercise 2 [पृष्ठ २१७]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
पाठ 6 Differential Equations
Miscellaneous exercise 2 | Q 5.4 | पृष्ठ २१७

संबंधित प्रश्‍न

Obtain the differential equation by eliminating the arbitrary constants from the following equation:

(y - a)2 = 4(x - b)


Form the differential equation of family of lines having intercepts a and b on the co-ordinate ares respectively.


Form the differential equation of all parabolas whose axis is the X-axis.


In the following example verify that the given expression is a solution of the corresponding differential equation:

xy = log y +c; `"dy"/"dx" = "y"^2/(1 - "xy")`


Solve the following differential equation:

`"sec"^2 "x" * "tan y"  "dx" + "sec"^2 "y" * "tan x"  "dy" = 0` 


For the following differential equation find the particular solution satisfying the given condition:

`("x" + 1) "dy"/"dx" - 1 = 2"e"^-"y" , "y" = 0`, when x = 1


Reduce the following differential equation to the variable separable form and hence solve:

`"dy"/"dx" = cos("x + y")`


Reduce the following differential equation to the variable separable form and hence solve:

`cos^2 ("x - 2y") = 1 - 2 "dy"/"dx"`


Solve the following differential equation:

(x2 + y2)dx - 2xy dy = 0


Choose the correct option from the given alternatives:

x2 + y2 = a2 is a solution of


Choose the correct option from the given alternatives:

The solution of `"dy"/"dx" = ("y" + sqrt("x"^2 - "y"^2))/"x"` is


Choose the correct option from the given alternatives:

The solution of `"dy"/"dx" + "y" = cos "x" - sin "x"`


The particular solution of `dy/dx = xe^(y - x)`, when x = y = 0 is ______.


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

`"y"^2 = "a"("b - x")("b + x")`


In the following example verify that the given function is a solution of the differential equation.

`"x"^2 + "y"^2 = "r"^2; "x" "dy"/"dx" + "r" sqrt(1 + ("dy"/"dx")^2) = "y"`


In the following example verify that the given function is a solution of the differential equation.

`"y" = 3 "cos" (log "x") + 4 sin (log "x"); "x"^2 ("d"^2"y")/"dx"^2 + "x" "dy"/"dx" + "y" = 0`


In the following example verify that the given function is a solution of the differential equation.

`"xy" = "ae"^"x" + "be"^-"x" + "x"^2; "x" ("d"^2"y")/"dx"^2 + 2 "dy"/"dx" + "x"^2 = "xy" + 2`


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = `"Ae"^(3"x" + 1) + "Be"^(- 3"x" + 1)`


Solve the following differential equation:

`"dy"/"dx" = "x"^2"y" + "y"`


Find the particular solution of the following differential equation:

`"dy"/"dx" - 3"y" cot "x" = sin "2x"`, when `"y"(pi/2) = 2`


Find the particular solution of the following differential equation:

(x + y)dy + (x - y)dx = 0; when x = 1 = y


Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0


The family of curves y = `e^("a" sin x)`, where a is an arbitrary constant, is represented by the differential equation.


Form the differential equation of all straight lines touching the circle x2 + y2 = r2


Find the differential equation of the family of parabolas with vertex at (0, –1) and having axis along the y-axis


The rate of disintegration of a radio active element at time t is proportional to its mass, at the time. Then the time during which the original mass of 1.5 gm. Will disintegrate into its mass of 0.5 gm. is proportional to ______.


If `x^2 y^2 = sin^-1 sqrt(x^2 + y^2) + cos^-1 sqrt(x^2 + y^2)`, then `"dy"/"dx"` = ?


The elimination of the arbitrary constant m from the equation y = emx gives the differential equation ______.


The differential equation whose solution is (x – h)2 + (y – k)2 = a2 is (where a is a constant) ______.


The differential equation representing the family of ellipse having foci either on the x-axis or on the y-axis centre at the origin and passing through the point (0, 3) is ______.


If y = (tan–1 x)2 then `(x^2 + 1)^2 (d^2y)/(dx^2) + 2x(x^2 + 1) (dy)/(dx)` = ______.


The differential equation of the family of circles touching Y-axis at the origin is ______.


The differential equation of all circles passing through the origin and having their centres on the X-axis is ______.


Solve the differential equation

cos2(x – 2y) = `1 - 2dy/dx`


Form the differential equation of all concentric circles having centre at the origin.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×