Advertisements
Advertisements
प्रश्न
Reduce the following differential equation to the variable separable form and hence solve:
`cos^2 ("x - 2y") = 1 - 2 "dy"/"dx"`
उत्तर
`cos^2 ("x - 2y") = 1 - 2 "dy"/"dx"` .....(1)
Put x - 2y = u. Then 1 - `2 "dy"/"dx" = "du"/"dx"`
∴ (1) becomes, `cos^2 "u" = "du"/"dx"`
∴ dx = `1/cos^2"u"`du
Integrating both sides, we get
∫ dx = ∫ sec2u du
∴ x = tan u + c
∴ x = tan (x - 2y) + c
This is the general solution.
APPEARS IN
संबंधित प्रश्न
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = A cos (log x) + B sin (log x)
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = a + `"a"/"x"`
Find the differential equation all parabolas having a length of latus rectum 4a and axis is parallel to the axis.
Find the differential equation of the ellipse whose major axis is twice its minor axis.
Find the differential equation of all circles having radius 9 and centre at point (h, k).
Form the differential equation of all parabolas whose axis is the X-axis.
In the following example verify that the given expression is a solution of the corresponding differential equation:
xy = log y +c; `"dy"/"dx" = "y"^2/(1 - "xy")`
In the following example verify that the given expression is a solution of the corresponding differential equation:
y = `(sin^-1 "x")^2 + "c"; (1 - "x"^2) ("d"^2"y")/"dx"^2 - "x" "dy"/"dx" = 2`
Solve the following differential equation:
`"dy"/"dx" = (1 + "y")^2/(1 + "x")^2`
Solve the following differential equation:
cos x . cos y dy − sin x . sin y dx = 0
Solve the following differential equation:
`"dy"/"dx" = - "k",` where k is a constant.
Solve the following differential equation:
`2"e"^("x + 2y") "dx" - 3"dy" = 0`
For the following differential equation find the particular solution satisfying the given condition:
`y(1 + log x) dx/dy - x log x = 0, y = e^2,` when x = e
For the following differential equation find the particular solution satisfying the given condition:
`(e^y + 1) cos x + e^y sin x. dy/dx = 0, "when" x = pi/6,` y = 0
Choose the correct option from the given alternatives:
The differential equation of y = `"c"^2 + "c"/"x"` is
Choose the correct option from the given alternatives:
The differential equation of all circles having their centres on the line y = 5 and touching the X-axis is
The integrating factor of linear differential equation `x dy/dx + 2y = x^2 log x` is ______.
Choose the correct option from the given alternatives:
The solution of the differential equation `"dy"/"dx" = sec "x" - "y" tan "x"`
In the following example verify that the given function is a solution of the differential equation.
`"x"^2 + "y"^2 = "r"^2; "x" "dy"/"dx" + "r" sqrt(1 + ("dy"/"dx")^2) = "y"`
In the following example verify that the given function is a solution of the differential equation.
`"y" = "e"^"ax" sin "bx"; ("d"^2"y")/"dx"^2 - 2"a" "dy"/"dx" + ("a"^2 + "b"^2)"y" = 0`
In the following example verify that the given function is a solution of the differential equation.
`"x"^2 = "2y"^2 log "y", "x"^2 + "y"^2 = "xy" "dx"/"dy"`
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
(y - a)2 = b(x + 4)
Solve the following differential equation:
`"dy"/"dx" = ("2y" - "x")/("2y + x")`
Find the particular solution of the following differential equation:
`"dy"/"dx" - 3"y" cot "x" = sin "2x"`, when `"y"(pi/2) = 2`
Find the particular solution of the following differential equation:
`2e ^(x/y) dx + (y - 2xe^(x/y)) dy = 0," When" y (0) = 1`
Find the differential equation of family of lines making equal intercepts on coordinate axes
Find the differential equation of family of all ellipse whose major axis is twice the minor axis
Find the differential equation of the family of all non-horizontal lines in a plane
Find the differential equation of the family of circles passing through the origin and having their centres on the x-axis
The rate of disintegration of a radio active element at time t is proportional to its mass, at the time. Then the time during which the original mass of 1.5 gm. Will disintegrate into its mass of 0.5 gm. is proportional to ______.
The general solution of the differential equation of all circles having centre at A(- 1, 2) is ______.
Solve the following differential equation:
`xsin(y/x)dy = [ysin(y/x) - x]dx`
The differential equation whose solution is (x – h)2 + (y – k)2 = a2 is (where a is a constant) ______.
The differential equation for a2y = log x + b, is ______.
Solve the differential equation
cos2(x – 2y) = `1 - 2dy/dx`
If 2x = `y^(1/m) + y^(-1/m)`, then show that `(x^2 - 1) (dy/dx)^2` = m2y2
Form the differential equation whose general solution is y = a cos 2x + b sin 2x.