मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Obtain the differential equation by eliminating the arbitrary constants from the following equation: y = A cos (log x) + B sin (log x) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = A cos (log x) + B sin (log x)

बेरीज

उत्तर

y = A cos (log x) + B sin (log x)    ...(1)

Differentiating w.r.t. x, we get

`"dy"/"dx" = - "A  sin" ("log x")*"d"/"dx" ("log  x") + "B cos" ("log x")*"d"/"dx" ("log x")`

`= (- "A sin" ("log x"))/"x" + ("B cos" (log "x"))/"x"`

∴ `"x" "dy"/"dx"` = – A sin (log x) + B cos (log x)

Differentiating again w.r.t. x, we get

`"x" ("d"^2"y")/"dx"^2 + "dy"/"dx" = (- "A cos" ("log x"))/"x" + ("B sin" (log "x"))/"x"`

∴ `"x"^2 ("d"^2"y")/"dx"^2 + "x""dy"/"dx"` = – [A cos (log x) + B sin (log x)] = – y    .....[By (1)]

∴ `"x"^2 ("d"^2"y")/"dx"^2 + "x""dy"/"dx" + "y"` = 0 is the required D.E.

shaalaa.com
Formation of Differential Equations
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Differential Equations - Exercise 6.2 [पृष्ठ १९६]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
पाठ 6 Differential Equations
Exercise 6.2 | Q 1.03 | पृष्ठ १९६

संबंधित प्रश्‍न

Find the differential equation of the ellipse whose major axis is twice its minor axis.


Form the differential equation of family of lines parallel to the line 2x + 3y + 4 = 0.


In the following example verify that the given expression is a solution of the corresponding differential equation:

y = `(sin^-1 "x")^2 + "c"; (1 - "x"^2) ("d"^2"y")/"dx"^2 - "x" "dy"/"dx" = 2`


In the following example verify that the given expression is a solution of the corresponding differential equation:

y = xm; `"x"^2 ("d"^2"y")/"dx"^2 - "mx" "dy"/"dx" + "my" = 0`


Solve the following differential equation:

`"sec"^2 "x" * "tan y"  "dx" + "sec"^2 "y" * "tan x"  "dy" = 0` 


Reduce the following differential equation to the variable separable form and hence solve:

`("x - y")^2 "dy"/"dx" = "a"^2`


Reduce the following differential equation to the variable separable form and hence solve:

`cos^2 ("x - 2y") = 1 - 2 "dy"/"dx"`


Choose the correct option from the given alternatives:

The differential equation of all circles having their centres on the line y = 5 and touching the X-axis is


Choose the correct option from the given alternatives:

`"x"^2/"a"^2 - "y"^2/"b"^2 = 1` is a solution of


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

(y - a)2 = b(x + 4)


Form the differential equation of all the lines which are normal to the line 3x + 2y + 7 = 0.


Solve the following differential equation:

`"dy"/"dx" = "x"^2"y" + "y"`


Solve the following differential equation:

`"dy"/"dx" = ("2y" - "x")/("2y + x")`


Find the particular solution of the following differential equation:

`("x + 2y"^2) "dy"/"dx" = "y",` when x = 2, y = 1


Find the particular solution of the following differential equation:

(x + y)dy + (x - y)dx = 0; when x = 1 = y


Find the particular solution of the following differential equation:

y(1 + log x) = (log xx) `"dy"/"dx"`, when y(e) = e2


Find the particular solution of the following differential equation:

`2e ^(x/y) dx + (y - 2xe^(x/y)) dy = 0," When" y (0) = 1`


Select and write the correct alternative from the given option for the question

General solution of `y - x ("d"y)/("d"x)` = 0 is


Select and write the correct alternative from the given option for the question

The solution of `("d"y)/("d"x)` = 1 is


Form the differential equation of family of standard circle


Find the differential equation by eliminating arbitrary constants from the relation y = (c1 + c2x)ex 


Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0


Find the differential equation from the relation x2 + 4y2 = 4b2 


The family of curves y = `e^("a" sin x)`, where a is an arbitrary constant, is represented by the differential equation.


Form the differential equation of all straight lines touching the circle x2 + y2 = r2


Find the differential equation of the family of parabolas with vertex at (0, –1) and having axis along the y-axis


Find the differential equation of the curve represented by xy = aex + be–x + x2


The elimination of the arbitrary constant m from the equation y = emx gives the differential equation ______.


Solve the following differential equation:

`xsin(y/x)dy = [ysin(y/x) - x]dx`


The differential equation of all parabolas having vertex at the origin and axis along positive Y-axis is ______.


Solve the differential equation

cos2(x – 2y) = `1 - 2dy/dx`


Find the particular solution of the differential equation `x^2 dy/dx + y^2 = xy dy/dx`, if y = 1 when x = 1.


Solve the differential equation

ex tan y dx + (1 + ex) sec2 y dy = 0


Form the differential equation of all concentric circles having centre at the origin.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×