Advertisements
Advertisements
प्रश्न
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y2 = (x + c)3
उत्तर
y2 = (x + c)3 ...(1)
Differentiating w.r.t. x, we get
`"2y" "dy"/"dx" = 3("x + c")^2 * (1) = 3("x + c")^2`
∴ `("x + c")^2 = "2y"/3 * "dy"/"dx"`
∴ `("x + c")^6 = ("2y"/3 * "dy"/"dx")^3`
∴ `("y"^2)^2 = "8y"^3/27 * ("dy"/"dx")^3` ....[By (1)]
∴ `"27y"^4 = "8y"^3("dy"/"dx")^3`
∴ `"27y" = 8("dy"/"dx")^3`
∴ `8("dy"/"dx")^3 - 27"y" = 0`
This is the required D.E.
APPEARS IN
संबंधित प्रश्न
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
x3 + y3 = 4ax
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = Ae5x + Be-5x
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = a + `"a"/"x"`
Find the differential equation of all circles having radius 9 and centre at point (h, k).
Form the differential equation of family of lines parallel to the line 2x + 3y + 4 = 0.
In the following example verify that the given expression is a solution of the corresponding differential equation:
xy = log y +c; `"dy"/"dx" = "y"^2/(1 - "xy")`
In the following example verify that the given expression is a solution of the corresponding differential equation:
y = xm; `"x"^2 ("d"^2"y")/"dx"^2 - "mx" "dy"/"dx" + "my" = 0`
In the following example verify that the given expression is a solution of the corresponding differential equation:
y = `"e"^"ax"; "x" "dy"/"dx" = "y" log "y"`
Solve the following differential equation:
`"dy"/"dx" = (1 + "y")^2/(1 + "x")^2`
Solve the following differential equation:
`"y" - "x" "dy"/"dx" = 0`
Solve the following differential equation:
`"dy"/"dx" = - "k",` where k is a constant.
Solve the following differential equation:
(x2 + y2)dx - 2xy dy = 0
Choose the correct option from the given alternatives:
The solution of the differential equation `"dy"/"dx" = sec "x" - "y" tan "x"`
Choose the correct option from the given alternatives:
`"x"^2/"a"^2 - "y"^2/"b"^2 = 1` is a solution of
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = `sqrt("a" cos (log "x") + "b" sin (log "x"))`
Solve the following differential equation:
`"dy"/"dx" = ("2y" - "x")/("2y + x")`
Solve the following differential equation:
`"dy"/"dx" + "y cot x" = "x"^2 "cot x" + "2x"`
Find the particular solution of the following differential equation:
`"dy"/"dx" - 3"y" cot "x" = sin "2x"`, when `"y"(pi/2) = 2`
Find the particular solution of the following differential equation:
(x + y)dy + (x - y)dx = 0; when x = 1 = y
Select and write the correct alternative from the given option for the question
Solution of the equation `x ("d"y)/("d"x)` = y log y is
Select and write the correct alternative from the given option for the question
General solution of `y - x ("d"y)/("d"x)` = 0 is
Select and write the correct alternative from the given option for the question
The solutiion of `("d"y)/("d"x) + x^2/y^2` = 0 is
Form the differential equation of y = (c1 + c2)ex
The family of curves y = `e^("a" sin x)`, where a is an arbitrary constant, is represented by the differential equation.
Find the differential equation of the family of all non-horizontal lines in a plane
Find the differential equation of the family of circles passing through the origin and having their centres on the x-axis
Find the differential equation of the curve represented by xy = aex + be–x + x2
If `x^2 y^2 = sin^-1 sqrt(x^2 + y^2) + cos^-1 sqrt(x^2 + y^2)`, then `"dy"/"dx"` = ?
The elimination of the arbitrary constant m from the equation y = emx gives the differential equation ______.
The differential equation for all the straight lines which are at the distance of 2 units from the origin is ______.
The differential equation whose solution is (x – h)2 + (y – k)2 = a2 is (where a is a constant) ______.
If y = (tan–1 x)2 then `(x^2 + 1)^2 (d^2y)/(dx^2) + 2x(x^2 + 1) (dy)/(dx)` = ______.
Form the differential equation whose general solution is y = a cos 2x + b sin 2x.
A particle is moving along the X-axis. Its acceleration at time t is proportional to its velocity at that time. Find the differential equation of the motion of the particle.