Advertisements
Advertisements
प्रश्न
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = `sqrt("a" cos (log "x") + "b" sin (log "x"))`
उत्तर
y = `sqrt("a" cos (log "x") + "b" sin (log "x"))`
∴ y2 = a cos (log x) + b sin (log x) ....(1)
Differentiating both sides w.r.t. x, we get
`"2y" "dy"/"dx" = "a" "d"/"dx" [cos (log "x")] + "b" "d"/"dx" [sin (log "x")]`
`= "a" [ - sin (log "x")] * "d"/"dx" (log "x") + "b" cos (log "x") * "d"/"dx" (log "x")`
`= - "a" sin (log "x") xx 1/"x" + "b" cos (log "x") xx 1/"x"`
∴ `"2xy" "dy"/"dx" = - "a" sin (log "x") + "b" cos (log "x")`
Differentiating again w.r.t. x, we get
`2 ["xy" * "d"/"dx" ("dy"/"dx") + "dy"/"dx" * "d"/"dx" ("xy")]`
`= - "a" "d"/"dx" [sin (log "x")] + "b" "d"/"dx" [cos (log "x")]`
∴ `2 ["xy" ("d"^2"y")/"dx"^2 + "dy"/"dx" ("x" "dy"/"dx" + "y" xx 1)]`
`= - "a" cos (log "x") * "d"/"dx" (log "x") + "b"[- sin (log "x")] * "d"/"dx" (log "x")`
∴ `2"xy" ("d"^2"y")/"dx"^2 + 2"x" ("dy"/"dx")^2 + "2y" "dy"/"dx"
`= - "a" cos (log "x") xx 1/"x" - "b" sin (log "x") xx 1/"x"`
∴ `2"x"^2"y" ("d"^2"y")/"dx"^2 + 2"x"^2("dy"/"dx")^2 + 2"xy" "dy"/"dx"`
`= -["a" cos (log "x") + "b" sin (log "x")] = - "y"^2` ......[By (1)]
∴ `2"x"^2"y" ("d"^2"y")/"dx"^2 + 2"x"^2 ("dy"/"dx")^2 + 2"xy" "dy"/"dx" + "y"^2 = 0`
This is the required D.E.
Notes
The answer in the textbook is incorrect.
APPEARS IN
संबंधित प्रश्न
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
Ax2 + By2 = 1
Find the differential equation of all circles having radius 9 and centre at point (h, k).
In the following example verify that the given expression is a solution of the corresponding differential equation:
xy = log y +c; `"dy"/"dx" = "y"^2/(1 - "xy")`
In the following example verify that the given expression is a solution of the corresponding differential equation:
y = `(sin^-1 "x")^2 + "c"; (1 - "x"^2) ("d"^2"y")/"dx"^2 - "x" "dy"/"dx" = 2`
In the following example verify that the given expression is a solution of the corresponding differential equation:
y = `"a" + "b"/"x"; "x" ("d"^2"y")/"dx"^2 + 2 "dy"/"dx" = 0`
Solve the following differential equation:
`"sec"^2 "x" * "tan y" "dx" + "sec"^2 "y" * "tan x" "dy" = 0`
Solve the following differential equation:
`"y"^3 - "dy"/"dx" = "x"^2 "dy"/"dx"`
For the following differential equation find the particular solution satisfying the given condition:
`y(1 + log x) dx/dy - x log x = 0, y = e^2,` when x = e
For the following differential equation find the particular solution satisfying the given condition:
`("x" + 1) "dy"/"dx" - 1 = 2"e"^-"y" , "y" = 0`, when x = 1
Reduce the following differential equation to the variable separable form and hence solve:
`"x + y""dy"/"dx" = sec("x"^2 + "y"^2)`
Solve the following differential equation:
(x2 + y2)dx - 2xy dy = 0
Choose the correct option from the given alternatives:
x2 + y2 = a2 is a solution of
Choose the correct option from the given alternatives:
The differential equation of all circles having their centres on the line y = 5 and touching the X-axis is
Choose the correct option from the given alternatives:
The solution of `("x + y")^2 "dy"/"dx" = 1` is
Choose the correct option from the given alternatives:
The solution of `"dy"/"dx" + "y" = cos "x" - sin "x"`
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
`"y"^2 = "a"("b - x")("b + x")`
In the following example verify that the given function is a solution of the differential equation.
`"x"^2 + "y"^2 = "r"^2; "x" "dy"/"dx" + "r" sqrt(1 + ("dy"/"dx")^2) = "y"`
In the following example verify that the given function is a solution of the differential equation.
`"xy" = "ae"^"x" + "be"^-"x" + "x"^2; "x" ("d"^2"y")/"dx"^2 + 2 "dy"/"dx" + "x"^2 = "xy" + 2`
Form the differential equation of all the lines which are normal to the line 3x + 2y + 7 = 0.
Solve the following differential equation:
`"dy"/"dx" = "x"^2"y" + "y"`
Solve the following differential equation:
`"dy"/"dx" = ("2y" - "x")/("2y + x")`
Solve the following differential equation:
`"dx"/"dy" + "8x" = 5"e"^(- 3"y")`
Select and write the correct alternative from the given option for the question
Solution of the equation `x ("d"y)/("d"x)` = y log y is
Form the differential equation of y = (c1 + c2)ex
Find the differential equation by eliminating arbitrary constants from the relation x2 + y2 = 2ax
Find the differential equation of the family of all non-vertical lines in a plane
Find the differential equation of the family of all the parabolas with latus rectum 4a and whose axes are parallel to the x-axis
Find the differential equation corresponding to the family of curves represented by the equation y = Ae8x + Be –8x, where A and B are arbitrary constants
The differential equation of all lines perpendicular to the line 5x + 2y + 7 = 0 is ____________.
The differential equation for all the straight lines which are at the distance of 2 units from the origin is ______.
Form the differential equation of all lines which makes intercept 3 on x-axis.
The differential equation of the family of circles touching Y-axis at the origin is ______.
The differential equation for a2y = log x + b, is ______.
Form the differential equation whose general solution is y = a cos 2x + b sin 2x.
Find the particular solution of the differential equation `x^2 dy/dx + y^2 = xy dy/dx`, if y = 1 when x = 1.