मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Obtain the differential equation by eliminating the arbitrary constants from the following equation: y = axbxacos(logx)+bsin(logx) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = `sqrt("a" cos (log "x") + "b" sin (log "x"))`

बेरीज

उत्तर

y = `sqrt("a" cos (log "x") + "b" sin (log "x"))`

∴ y2 = a cos (log x) + b sin (log x)    ....(1)

Differentiating both sides w.r.t. x, we get

`"2y" "dy"/"dx" = "a" "d"/"dx" [cos (log "x")] + "b" "d"/"dx" [sin (log "x")]`

`= "a" [ - sin (log "x")] * "d"/"dx" (log "x") + "b" cos (log "x") * "d"/"dx" (log "x")`

`= - "a" sin (log "x") xx 1/"x" + "b" cos (log "x") xx 1/"x"`

∴ `"2xy" "dy"/"dx" = - "a" sin (log "x") + "b" cos (log "x")`

Differentiating again w.r.t. x, we get

`2 ["xy" * "d"/"dx" ("dy"/"dx") + "dy"/"dx" * "d"/"dx" ("xy")]`

`= - "a" "d"/"dx" [sin (log "x")] + "b" "d"/"dx" [cos (log "x")]`

∴ `2 ["xy"  ("d"^2"y")/"dx"^2 + "dy"/"dx" ("x" "dy"/"dx" + "y" xx 1)]`

`= - "a" cos (log "x") * "d"/"dx" (log "x") + "b"[- sin (log "x")] * "d"/"dx" (log "x")`

∴ `2"xy" ("d"^2"y")/"dx"^2 + 2"x" ("dy"/"dx")^2 + "2y" "dy"/"dx"

`= - "a" cos (log "x") xx 1/"x" - "b" sin (log "x") xx 1/"x"`

∴ `2"x"^2"y" ("d"^2"y")/"dx"^2 + 2"x"^2("dy"/"dx")^2 + 2"xy" "dy"/"dx"`

`= -["a" cos (log "x") + "b" sin (log "x")] = - "y"^2`  ......[By (1)]

∴ `2"x"^2"y" ("d"^2"y")/"dx"^2 + 2"x"^2 ("dy"/"dx")^2 + 2"xy" "dy"/"dx" + "y"^2 = 0`

This is the required D.E.

shaalaa.com

Notes

The answer in the textbook is incorrect.

Formation of Differential Equations
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Differential Equations - Miscellaneous exercise 2 [पृष्ठ २१७]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
पाठ 6 Differential Equations
Miscellaneous exercise 2 | Q 3.4 | पृष्ठ २१७

संबंधित प्रश्‍न

Obtain the differential equation by eliminating the arbitrary constants from the following equation:

Ax2 + By2 = 1


Form the differential equation of family of lines having intercepts a and b on the co-ordinate ares respectively.


Find the differential equation of all circles having radius 9 and centre at point (h, k).


In the following example verify that the given expression is a solution of the corresponding differential equation:

xy = log y +c; `"dy"/"dx" = "y"^2/(1 - "xy")`


In the following example verify that the given expression is a solution of the corresponding differential equation:

y = `(sin^-1 "x")^2 + "c"; (1 - "x"^2) ("d"^2"y")/"dx"^2 - "x" "dy"/"dx" = 2`


In the following example verify that the given expression is a solution of the corresponding differential equation:

y = `"a" + "b"/"x"; "x" ("d"^2"y")/"dx"^2 + 2 "dy"/"dx" = 0`


Solve the following differential equation:

`"sec"^2 "x" * "tan y"  "dx" + "sec"^2 "y" * "tan x"  "dy" = 0` 


Solve the following differential equation:

`"y"^3 - "dy"/"dx" = "x"^2 "dy"/"dx"`


For the following differential equation find the particular solution satisfying the given condition:

`y(1 + log x) dx/dy - x log x = 0, y = e^2,` when x = e


For the following differential equation find the particular solution satisfying the given condition:

`("x" + 1) "dy"/"dx" - 1 = 2"e"^-"y" , "y" = 0`, when x = 1


Reduce the following differential equation to the variable separable form and hence solve:

`"x + y""dy"/"dx" = sec("x"^2 + "y"^2)`


Solve the following differential equation:

(x2 + y2)dx - 2xy dy = 0


Choose the correct option from the given alternatives:

x2 + y2 = a2 is a solution of


Choose the correct option from the given alternatives:

The differential equation of all circles having their centres on the line y = 5 and touching the X-axis is


Choose the correct option from the given alternatives:

The solution of `("x + y")^2 "dy"/"dx" = 1` is


Choose the correct option from the given alternatives:

The solution of `"dy"/"dx" + "y" = cos "x" - sin "x"`


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

`"y"^2 = "a"("b - x")("b + x")`


In the following example verify that the given function is a solution of the differential equation.

`"x"^2 + "y"^2 = "r"^2; "x" "dy"/"dx" + "r" sqrt(1 + ("dy"/"dx")^2) = "y"`


In the following example verify that the given function is a solution of the differential equation.

`"xy" = "ae"^"x" + "be"^-"x" + "x"^2; "x" ("d"^2"y")/"dx"^2 + 2 "dy"/"dx" + "x"^2 = "xy" + 2`


Form the differential equation of all the lines which are normal to the line 3x + 2y + 7 = 0.


Solve the following differential equation:

`"dy"/"dx" = "x"^2"y" + "y"`


Solve the following differential equation:

`"dy"/"dx" = ("2y" - "x")/("2y + x")`


Solve the following differential equation:

`"dx"/"dy" + "8x" = 5"e"^(- 3"y")`


Select and write the correct alternative from the given option for the question

Solution of the equation `x  ("d"y)/("d"x)` = y log y is


Form the differential equation of y = (c1 + c2)ex 


Find the differential equation by eliminating arbitrary constants from the relation x2 + y2 = 2ax


Find the differential equation of the family of all non-vertical lines in a plane


Find the differential equation of the family of all the parabolas with latus rectum 4a and whose axes are parallel to the x-axis


Find the differential equation corresponding to the family of curves represented by the equation y = Ae8x + Be 8x, where A and B are arbitrary constants


The differential equation of all lines perpendicular to the line 5x + 2y + 7 = 0 is ____________.


The differential equation for all the straight lines which are at the distance of 2 units from the origin is ______.


Form the differential equation of all lines which makes intercept 3 on x-axis.


The differential equation of the family of circles touching Y-axis at the origin is ______.


The differential equation for a2y = log x + b, is ______.


Form the differential equation whose general solution is y = a cos 2x + b sin 2x.


Find the particular solution of the differential equation `x^2 dy/dx + y^2 = xy dy/dx`, if y = 1 when x = 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×