Advertisements
Advertisements
प्रश्न
Find the differential equation of the family of all the parabolas with latus rectum 4a and whose axes are parallel to the x-axis
उत्तर
Given the equation of family of parabolas with latus rectum 4a and axes are parallel to x-axis then
(y – b)2 = 4a(x – a), where (a, b) is the vertex of parabola.
y2 – 2yb + b2 = 4ax – 4a2 ........(1)
Differentiating equation (1) with respect to x, we get
`2y ("d"y)/("d"x) - 2"b" ("d"y)/("d"x) + 0 = 4"a" - 0`
`2(y ("d"y)/("d"x) - "b" ("d"y)/("d"x))` = 4a
`("d"y)/("d"x) (y - "b") = (4"a")/2`
`("d"y)/("d"x) (y - "b")` = 2a
`y ("d"y)/("d"x) - 2"a" = "b" ("d"y)/("d"x)`
∵ `("d"y)/("d"x)` = y'
∴ yy' – 2a = by' .......(2)
Differentiating equation (2) with respect to ‘x’, we get
yy”+ y’y’ = by”
yy” + y’2 = by” ……. (3)
Substituting the b value in (3), we get
yy'' + (y')2 = `((yy"'" - 2"a")/(y"'"))y"''"`
`yy"''" + (y"'")^2 - y"''" ((yy"''" - 2"a")/(y"'"))` = 0
`yy"''" + (y"'")^2 - (yy"''"y"'")/y + (2"a"y"''")/(y"'")` = 0
`yy"''" + (y"'")^2 - yy"''" + (2"a"y"''")/(y"'")` = 0
`(y"'")^2 + (2"a"y"''")/(y"'")` = 0
Multiply by y', we get
`(y"'")^3 + (2"a"y"''" xx y"'")/(y"'")` = 0
(y')3 + 2ay'' = 0
Which is a required differential equation.
APPEARS IN
संबंधित प्रश्न
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = Ae5x + Be-5x
In the following example verify that the given expression is a solution of the corresponding differential equation:
y = `(sin^-1 "x")^2 + "c"; (1 - "x"^2) ("d"^2"y")/"dx"^2 - "x" "dy"/"dx" = 2`
In the following example verify that the given expression is a solution of the corresponding differential equation:
y = e-x + Ax + B; `"e"^"x" ("d"^2"y")/"dx"^2 = 1`
Solve the following differential equation:
`log ("dy"/"dx") = 2"x" + 3"y"`
Solve the following differential equation:
cos x . cos y dy − sin x . sin y dx = 0
Solve the following differential equation:
`"dy"/"dx" = - "k",` where k is a constant.
In the following example verify that the given function is a solution of the differential equation.
`"y" = "e"^"ax" sin "bx"; ("d"^2"y")/"dx"^2 - 2"a" "dy"/"dx" + ("a"^2 + "b"^2)"y" = 0`
In the following example verify that the given function is a solution of the differential equation.
`"y" = 3 "cos" (log "x") + 4 sin (log "x"); "x"^2 ("d"^2"y")/"dx"^2 + "x" "dy"/"dx" + "y" = 0`
Solve the following differential equation:
`"dy"/"dx" = "x"^2"y" + "y"`
Solve the following differential equation:
`"dy"/"dx" = ("2y" - "x")/("2y + x")`
The general solution of `(dy)/(dx)` = e−x is ______.
Find the differential equation of family of lines making equal intercepts on coordinate axes
Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0
The differential equation of all lines perpendicular to the line 5x + 2y + 7 = 0 is ____________.
The differential equation for all the straight lines which are at the distance of 2 units from the origin is ______.
The differential equation whose solution is (x – h)2 + (y – k)2 = a2 is (where a is a constant) ______.
The differential equation of all circles passing through the origin and having their centres on the X-axis is ______.
The differential equation of all parabolas having vertex at the origin and axis along positive Y-axis is ______.
The differential equation for a2y = log x + b, is ______.
If 2x = `y^(1/m) + y^(-1/m)`, then show that `(x^2 - 1) (dy/dx)^2` = m2y2