मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Find the differential equation of family of lines making equal intercepts on coordinate axes - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the differential equation of family of lines making equal intercepts on coordinate axes

बेरीज

उत्तर

The equation of family of lines which makes equal intercepts on coordinate axes is

x + y = a, where a is an arbitrary constant.

Differentiating w.r.t. x, we get

`1 + ("d"y)/("d"x)` = 0, which is the required differential equation.

shaalaa.com
Formation of Differential Equations
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2.6: Differential Equations - Answer the following

संबंधित प्रश्‍न

Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y2 = (x + c)3


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = e−2x (A cos x + B sin x)


Find the differential equation of all circles having radius 9 and centre at point (h, k).


In the following example verify that the given expression is a solution of the corresponding differential equation:

y = `(sin^-1 "x")^2 + "c"; (1 - "x"^2) ("d"^2"y")/"dx"^2 - "x" "dy"/"dx" = 2`


In the following example verify that the given expression is a solution of the corresponding differential equation:

y = e-x + Ax + B; `"e"^"x" ("d"^2"y")/"dx"^2 = 1`


In the following example verify that the given expression is a solution of the corresponding differential equation:

y = xm; `"x"^2 ("d"^2"y")/"dx"^2 - "mx" "dy"/"dx" + "my" = 0`


Solve the following differential equation:

`"sec"^2 "x" * "tan y"  "dx" + "sec"^2 "y" * "tan x"  "dy" = 0` 


For the following differential equation find the particular solution satisfying the given condition:

`y(1 + log x) dx/dy - x log x = 0, y = e^2,` when x = e


Reduce the following differential equation to the variable separable form and hence solve:

`"x + y""dy"/"dx" = sec("x"^2 + "y"^2)`


Choose the correct option from the given alternatives:

The differential equation of all circles having their centres on the line y = 5 and touching the X-axis is


Choose the correct option from the given alternatives:

The solution of `"dy"/"dx" = ("y" + sqrt("x"^2 - "y"^2))/"x"` is


The integrating factor of linear differential equation `x dy/dx + 2y = x^2 log x` is ______.


The particular solution of `dy/dx = xe^(y - x)`, when x = y = 0 is ______.


In the following example verify that the given function is a solution of the differential equation.

`"y" = "e"^"ax" sin "bx"; ("d"^2"y")/"dx"^2 - 2"a" "dy"/"dx" + ("a"^2 + "b"^2)"y" = 0`


In the following example verify that the given function is a solution of the differential equation.

`"x"^2 = "2y"^2 log "y",  "x"^2 + "y"^2 = "xy" "dx"/"dy"`


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = `sqrt("a" cos (log "x") + "b" sin (log "x"))`


Solve the following differential equation:

`"dy"/"dx" = ("2y" - "x")/("2y + x")`


Find the particular solution of the following differential equation:

y(1 + log x) = (log xx) `"dy"/"dx"`, when y(e) = e2


Find the particular solution of the following differential equation:

`2e ^(x/y) dx + (y - 2xe^(x/y)) dy = 0," When" y (0) = 1`


Select and write the correct alternative from the given option for the question

Solution of the equation `x  ("d"y)/("d"x)` = y log y is


The general solution of `(dy)/(dx)` = e−x is ______.


Select and write the correct alternative from the given option for the question 

The solutiion of `("d"y)/("d"x) + x^2/y^2` = 0 is


Find the differential equation by eliminating arbitrary constants from the relation x2 + y2 = 2ax


Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0


Form the differential equation of all straight lines touching the circle x2 + y2 = r2


The general solution of the differential equation of all circles having centre at A(- 1, 2) is ______.


The elimination of the arbitrary constant m from the equation y = emx gives the differential equation ______.


If m and n are respectively the order and degree of the differential equation of the family of parabolas with focus at the origin and X-axis as its axis, then mn - m + n = ______.


Solve the following differential equation:

`xsin(y/x)dy = [ysin(y/x) - x]dx`


The differential equation whose solution is (x – h)2 + (y – k)2 = a2 is (where a is a constant) ______.


If y = (tan–1 x)2 then `(x^2 + 1)^2 (d^2y)/(dx^2) + 2x(x^2 + 1) (dy)/(dx)` = ______.


The differential equation of all parabolas whose axis is Y-axis, is ______.


The differential equation of the family of circles touching Y-axis at the origin is ______.


The differential equation of all circles passing through the origin and having their centres on the X-axis is ______.


If 2x = `y^(1/m) + y^(-1/m)`, then show that `(x^2 - 1) (dy/dx)^2` = m2y2


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×