Advertisements
Advertisements
प्रश्न
Find the particular solution of the following differential equation:
y(1 + log x) = (log xx) `"dy"/"dx"`, when y(e) = e2
उत्तर
`y(1 + log x) = (log x^x) dy/dx`
`y(1 + log x) - (log x^x) dy/dx = 0`
`y(1 + log x)dx/dy - xlogx = 0`
∴ `(1 + log "x")/("x log x")"dx" - "dy"/"y" = 0`
Integrating both sides, we get
∴ `int (1 + log "x")/("x log x")"dx" - "dy"/"y" = "c"_1` .....(1)
Put x log x = t
Then `["x" * "d"/"dx" (log "x") + (log "x") * "d"/"dx" ("x")]"dx" = "dt"`
∴ `["x"/"x" + (log "x")(1)]"dx" = "dt"`
∴ `int (1 + log "x")/("x" log "x")"dx" = int"dt"/"t" = log |"t"| = log |"x" log "x"|`
∴ from (1), the general solution is
log |x log x| - log |y| = log c, where c1 = log c
∴ log `|("x" log "x")/"y"| = log "c"`
∴ `("x" log "x")/"y" = "c"`
∴ x log x = cy
This is the general solution.
Now, y = `"e"^2`, when x = e
∴ e log e = c.e2
∴ 1 = c.e
∴ c = `1/"e"`
∴ the particular solution is x log x = `(1/"e")"y"`
∴ y = ex log x.
APPEARS IN
संबंधित प्रश्न
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
x3 + y3 = 4ax
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = Ae5x + Be-5x
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
(y - a)2 = 4(x - b)
Find the differential equation all parabolas having a length of latus rectum 4a and axis is parallel to the axis.
Find the differential equation of the ellipse whose major axis is twice its minor axis.
Form the differential equation of all parabolas whose axis is the X-axis.
Solve the following differential equation:
cos x . cos y dy − sin x . sin y dx = 0
Solve the following differential equation:
`2"e"^("x + 2y") "dx" - 3"dy" = 0`
Reduce the following differential equation to the variable separable form and hence solve:
`("x - y")^2 "dy"/"dx" = "a"^2`
Choose the correct option from the given alternatives:
x2 + y2 = a2 is a solution of
Choose the correct option from the given alternatives:
The differential equation of all circles having their centres on the line y = 5 and touching the X-axis is
The integrating factor of linear differential equation `x dy/dx + 2y = x^2 log x` is ______.
The particular solution of `dy/dx = xe^(y - x)`, when x = y = 0 is ______.
In the following example verify that the given function is a solution of the differential equation.
`"x"^2 + "y"^2 = "r"^2; "x" "dy"/"dx" + "r" sqrt(1 + ("dy"/"dx")^2) = "y"`
In the following example verify that the given function is a solution of the differential equation.
`"y" = 3 "cos" (log "x") + 4 sin (log "x"); "x"^2 ("d"^2"y")/"dx"^2 + "x" "dy"/"dx" + "y" = 0`
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = `sqrt("a" cos (log "x") + "b" sin (log "x"))`
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = `"Ae"^(3"x" + 1) + "Be"^(- 3"x" + 1)`
Form the differential equation of the hyperbola whose length of transverse and conjugate axes are half of that of the given hyperbola `"x"^2/16 - "y"^2/36 = "k"`.
Solve the following differential equation:
`"dy"/"dx" = "x"^2"y" + "y"`
Solve the following differential equation:
y log y = (log y2 - x) `"dy"/"dx"`
Solve the following differential equation:
`"dx"/"dy" + "8x" = 5"e"^(- 3"y")`
Find the particular solution of the following differential equation:
(x + y)dy + (x - y)dx = 0; when x = 1 = y
Select and write the correct alternative from the given option for the question
Solution of the equation `x ("d"y)/("d"x)` = y log y is
Form the differential equation of y = (c1 + c2)ex
Find the differential equation of family of all ellipse whose major axis is twice the minor axis
Find the differential equation by eliminating arbitrary constants from the relation x2 + y2 = 2ax
Find the differential equation from the relation x2 + 4y2 = 4b2
The family of curves y = `e^("a" sin x)`, where a is an arbitrary constant, is represented by the differential equation.
Find the differential equation of the family of all non-vertical lines in a plane
Find the differential equation of the family of parabolas with vertex at (0, –1) and having axis along the y-axis
The differential equation of all lines perpendicular to the line 5x + 2y + 7 = 0 is ____________.
The elimination of the arbitrary constant m from the equation y = emx gives the differential equation ______.
The differential equation for all the straight lines which are at the distance of 2 units from the origin is ______.
The differential equation whose solution is (x – h)2 + (y – k)2 = a2 is (where a is a constant) ______.
The differential equation of the family of circles touching Y-axis at the origin is ______.
The differential equation for a2y = log x + b, is ______.
If 2x = `y^(1/m) + y^(-1/m)`, then show that `(x^2 - 1) (dy/dx)^2` = m2y2