Advertisements
Advertisements
प्रश्न
Find the differential equation of the family of parabolas with vertex at (0, –1) and having axis along the y-axis
उत्तर
Equation of the family of parabolas with vertex at (0, –1) and having axis along the y-axis is
(x – 0)2 = 4a(y + 1)
x2 = 4a(y + 1) .......(1)
x2 = 4 ay + 4a
Differentiating equation (1) with respect to ‘x’, we get
2x = 4a y’
`(2x)/(y"'")` = 4a
Substituting 4a value in equation (1), we get
x² = `(2x)/(y"'") (y + 1)`
`x^2/x = 2/(y"'") (y + 1)`
x = `2/(y"'") (y + 1)`
xy’ = 2(y + 1)
xy’ = 2y + 2
xy’ – 2y – 2 = 0 is a required differential equation.
APPEARS IN
संबंधित प्रश्न
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
(y - a)2 = 4(x - b)
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = a + `"a"/"x"`
Solve the following differential equation:
`"sec"^2 "x" * "tan y" "dx" + "sec"^2 "y" * "tan x" "dy" = 0`
For the following differential equation find the particular solution satisfying the given condition:
`("x" + 1) "dy"/"dx" - 1 = 2"e"^-"y" , "y" = 0`, when x = 1
Choose the correct option from the given alternatives:
The differential equation of y = `"c"^2 + "c"/"x"` is
The particular solution of `dy/dx = xe^(y - x)`, when x = y = 0 is ______.
In the following example verify that the given function is a solution of the differential equation.
`"x"^2 + "y"^2 = "r"^2; "x" "dy"/"dx" + "r" sqrt(1 + ("dy"/"dx")^2) = "y"`
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = `sqrt("a" cos (log "x") + "b" sin (log "x"))`
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = `"Ae"^(3"x" + 1) + "Be"^(- 3"x" + 1)`
Form the differential equation of all the lines which are normal to the line 3x + 2y + 7 = 0.
Find the particular solution of the following differential equation:
(x + y)dy + (x - y)dx = 0; when x = 1 = y
The general solution of `(dy)/(dx)` = e−x is ______.
Select and write the correct alternative from the given option for the question
The solutiion of `("d"y)/("d"x) + x^2/y^2` = 0 is
Form the differential equation of family of standard circle
Form the differential equation of y = (c1 + c2)ex
Find the differential equation by eliminating arbitrary constants from the relation y = (c1 + c2x)ex
The family of curves y = `e^("a" sin x)`, where a is an arbitrary constant, is represented by the differential equation.
The differential equation of the family of circles touching Y-axis at the origin is ______.
If 2x = `y^(1/m) + y^(-1/m)`, then show that `(x^2 - 1) (dy/dx)^2` = m2y2