मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Obtain the differential equation by eliminating the arbitrary constants from the following equation: (y - a)2 = 4(x - b) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Obtain the differential equation by eliminating the arbitrary constants from the following equation:

(y - a)2 = 4(x - b)

बेरीज

उत्तर

(y - a)2 = 4(x - b)

Differentiating twice w.r.t. x, we get

`2 ("y - a")*"d"/"dx"("y - a") = 4 "d"/"dx" ("x - b")`

∴ `2 ("y - a")*("dy"/"dx" - 0) = 4(1 - 0)`

∴ `2 ("y - a")"dy"/"dx" = 4`

∴ `("y - a")"dy"/"dx" = 2`     ....(1)

Differentiating again w.r.t. x, we get

`("y - a")"d"/"dx" ("dy"/"dx") + "dy"/"dx"*"d"/"dx" ("y - a") = 0`

∴ `("y - a")("d"^2"y")/"dx"^2 + "dy"/"dx" * ("dy"/"dx" - 0) = 0`

∴ `("y - a")("d"^2"y")/"dx"^2 + ("dy"/"dx")^2 = 0`

∴ `2/("dy"/"dx") * ("d"^2"y")/"dx"^2 + ("dy"/"dx")^2 = 0`      .....[By (1)]

∴ `2 ("d"^2"y")/"dx"^2 + ("dy"/"dx")^3 = 0`

This is the required D.E.

shaalaa.com
Formation of Differential Equations
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Differential Equations - Exercise 6.2 [पृष्ठ १९६]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
पाठ 6 Differential Equations
Exercise 6.2 | Q 1.06 | पृष्ठ १९६

संबंधित प्रश्‍न

Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = c1e2x + c2e5x 


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = e−2x (A cos x + B sin x)


Form the differential equation of family of lines having intercepts a and b on the co-ordinate ares respectively.


In the following example verify that the given expression is a solution of the corresponding differential equation:

y = `(sin^-1 "x")^2 + "c"; (1 - "x"^2) ("d"^2"y")/"dx"^2 - "x" "dy"/"dx" = 2`


In the following example verify that the given expression is a solution of the corresponding differential equation:

y = `"a" + "b"/"x"; "x" ("d"^2"y")/"dx"^2 + 2 "dy"/"dx" = 0`


Solve the following differential equation:

`log  ("dy"/"dx") = 2"x" + 3"y"`


Solve the following differential equation:

`"sec"^2 "x" * "tan y"  "dx" + "sec"^2 "y" * "tan x"  "dy" = 0` 


Solve the following differential equation:

`"y"^3 - "dy"/"dx" = "x"^2 "dy"/"dx"`


For the following differential equation find the particular solution satisfying the given condition:

3ex tan y dx + (1 + ex) sec2 y dy = 0, when x = 0, y = π.


For the following differential equation find the particular solution satisfying the given condition:

`("x" + 1) "dy"/"dx" - 1 = 2"e"^-"y" , "y" = 0`, when x = 1


Reduce the following differential equation to the variable separable form and hence solve:

`cos^2 ("x - 2y") = 1 - 2 "dy"/"dx"`


Reduce the following differential equation to the variable separable form and hence solve:

(2x - 2y + 3)dx - (x - y + 1)dy = 0, when x = 0, y = 1.


Solve the following differential equation:

(x2 + y2)dx - 2xy dy = 0


Choose the correct option from the given alternatives:

The differential equation of y = `"c"^2 + "c"/"x"` is


Choose the correct option from the given alternatives:

The solution of `"dy"/"dx" + "y" = cos "x" - sin "x"`


The particular solution of `dy/dx = xe^(y - x)`, when x = y = 0 is ______.


Choose the correct option from the given alternatives:

`"x"^2/"a"^2 - "y"^2/"b"^2 = 1` is a solution of


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = a sin (x + b)


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = `sqrt("a" cos (log "x") + "b" sin (log "x"))`


Solve the following differential equation:

`"dy"/"dx" = "x"^2"y" + "y"`


Solve the following differential equation:

x dy = (x + y + 1) dx


Find the particular solution of the following differential equation:

`"dy"/"dx" - 3"y" cot "x" = sin "2x"`, when `"y"(pi/2) = 2`


Find the particular solution of the following differential equation:

`2e ^(x/y) dx + (y - 2xe^(x/y)) dy = 0," When" y (0) = 1`


Select and write the correct alternative from the given option for the question

Solution of the equation `x  ("d"y)/("d"x)` = y log y is


Form the differential equation of family of standard circle


Find the differential equation by eliminating arbitrary constants from the relation x2 + y2 = 2ax


Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0


Find the differential equation from the relation x2 + 4y2 = 4b2 


The family of curves y = `e^("a" sin x)`, where a is an arbitrary constant, is represented by the differential equation.


Find the differential equation of the family of all the parabolas with latus rectum 4a and whose axes are parallel to the x-axis


Find the differential equations of the family of all the ellipses having foci on the y-axis and centre at the origin


Find the differential equation of the curve represented by xy = aex + be–x + x2


The rate of disintegration of a radio active element at time t is proportional to its mass, at the time. Then the time during which the original mass of 1.5 gm. Will disintegrate into its mass of 0.5 gm. is proportional to ______.


The general solution of the differential equation of all circles having centre at A(- 1, 2) is ______.


If m and n are respectively the order and degree of the differential equation of the family of parabolas with focus at the origin and X-axis as its axis, then mn - m + n = ______.


The differential equation whose solution is (x – h)2 + (y – k)2 = a2 is (where a is a constant) ______.


The differential equation of all circles passing through the origin and having their centres on the X-axis is ______.


Form the differential equation of all concentric circles having centre at the origin.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×