English

Obtain the differential equation by eliminating the arbitrary constants from the following equation: (y - a)2 = 4(x - b) - Mathematics and Statistics

Advertisements
Advertisements

Question

Obtain the differential equation by eliminating the arbitrary constants from the following equation:

(y - a)2 = 4(x - b)

Sum

Solution

(y - a)2 = 4(x - b)

Differentiating twice w.r.t. x, we get

`2 ("y - a")*"d"/"dx"("y - a") = 4 "d"/"dx" ("x - b")`

∴ `2 ("y - a")*("dy"/"dx" - 0) = 4(1 - 0)`

∴ `2 ("y - a")"dy"/"dx" = 4`

∴ `("y - a")"dy"/"dx" = 2`     ....(1)

Differentiating again w.r.t. x, we get

`("y - a")"d"/"dx" ("dy"/"dx") + "dy"/"dx"*"d"/"dx" ("y - a") = 0`

∴ `("y - a")("d"^2"y")/"dx"^2 + "dy"/"dx" * ("dy"/"dx" - 0) = 0`

∴ `("y - a")("d"^2"y")/"dx"^2 + ("dy"/"dx")^2 = 0`

∴ `2/("dy"/"dx") * ("d"^2"y")/"dx"^2 + ("dy"/"dx")^2 = 0`      .....[By (1)]

∴ `2 ("d"^2"y")/"dx"^2 + ("dy"/"dx")^3 = 0`

This is the required D.E.

shaalaa.com
Formation of Differential Equations
  Is there an error in this question or solution?
Chapter 6: Differential Equations - Exercise 6.2 [Page 196]

APPEARS IN

RELATED QUESTIONS

Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = Ae5x + Be-5x 


Find the differential equation all parabolas having a length of latus rectum 4a and axis is parallel to the axis.


Form the differential equation of family of lines parallel to the line 2x + 3y + 4 = 0.


In the following example verify that the given expression is a solution of the corresponding differential equation:

y = `(sin^-1 "x")^2 + "c"; (1 - "x"^2) ("d"^2"y")/"dx"^2 - "x" "dy"/"dx" = 2`


In the following example verify that the given expression is a solution of the corresponding differential equation:

y = e-x + Ax + B; `"e"^"x" ("d"^2"y")/"dx"^2 = 1`


In the following example verify that the given expression is a solution of the corresponding differential equation:

y = `"a" + "b"/"x"; "x" ("d"^2"y")/"dx"^2 + 2 "dy"/"dx" = 0`


Solve the following differential equation:

`"dy"/"dx" = - "k",` where k is a constant.


For the following differential equation find the particular solution satisfying the given condition:

3ex tan y dx + (1 + ex) sec2 y dy = 0, when x = 0, y = π.


For the following differential equation find the particular solution satisfying the given condition:

`(e^y + 1) cos x + e^y sin x. dy/dx = 0,  "when" x = pi/6,` y = 0


Choose the correct option from the given alternatives:

The solution of `"dy"/"dx" + "y" = cos "x" - sin "x"`


Choose the correct option from the given alternatives:

The solution of the differential equation `"dy"/"dx" = sec "x" - "y" tan "x"`


In the following example verify that the given function is a solution of the differential equation.

`"y" = 3 "cos" (log "x") + 4 sin (log "x"); "x"^2 ("d"^2"y")/"dx"^2 + "x" "dy"/"dx" + "y" = 0`


In the following example verify that the given function is a solution of the differential equation.

`"x"^2 = "2y"^2 log "y",  "x"^2 + "y"^2 = "xy" "dx"/"dy"`


Form the differential equation of all parabolas which have 4b as latus rectum and whose axis is parallel to the Y-axis.


Solve the following differential equation:

`"dy"/"dx" = ("2y" - "x")/("2y + x")`


Solve the following differential equation:

y log y = (log y2 - x) `"dy"/"dx"`


Solve the following differential equation:

`"dx"/"dy" + "8x" = 5"e"^(- 3"y")`


Find the particular solution of the following differential equation:

`"dy"/"dx" - 3"y" cot "x" = sin "2x"`, when `"y"(pi/2) = 2`


Find the particular solution of the following differential equation:

`2e ^(x/y) dx + (y - 2xe^(x/y)) dy = 0," When" y (0) = 1`


The general solution of `(dy)/(dx)` = e−x is ______.


Select and write the correct alternative from the given option for the question 

The solutiion of `("d"y)/("d"x) + x^2/y^2` = 0 is


Form the differential equation of y = (c1 + c2)ex 


Find the differential equation of family of all ellipse whose major axis is twice the minor axis


Find the differential equation by eliminating arbitrary constants from the relation x2 + y2 = 2ax


Find the differential equation by eliminating arbitrary constants from the relation y = (c1 + c2x)ex 


The differential equation having y = (cos-1 x)2 + P (sin-1 x) + Q as its general solution, where P and Q are arbitrary constants, is 


Find the differential equation of the family of all non-vertical lines in a plane


Find the differential equation of the family of all non-horizontal lines in a plane 


Find the differential equation of the family of circles passing through the origin and having their centres on the x-axis


The general solution of the differential equation of all circles having centre at A(- 1, 2) is ______.


If m and n are respectively the order and degree of the differential equation of the family of parabolas with focus at the origin and X-axis as its axis, then mn - m + n = ______.


Form the differential equation of all lines which makes intercept 3 on x-axis.


The differential equation of all parabolas having vertex at the origin and axis along positive Y-axis is ______.


Solve the differential equation

cos2(x – 2y) = `1 - 2dy/dx`


Form the differential equation of all concentric circles having centre at the origin.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×