English

In the following example verify that the given expression is a solution of the corresponding differential equation: y = xcxdydxxdydx(sin-1x)2+c;(1-x2)d2ydx2-xdydx=2 - Mathematics and Statistics

Advertisements
Advertisements

Question

In the following example verify that the given expression is a solution of the corresponding differential equation:

y = `(sin^-1 "x")^2 + "c"; (1 - "x"^2) ("d"^2"y")/"dx"^2 - "x" "dy"/"dx" = 2`

Sum

Solution

y = `(sin^-1 "x")^2 + "c"`        .....(1)

Differentiating w.r.t. x, we get

`"dy"/"dx" = "d"/"dx" (sin^-1 "x")^2 + 0`

∴ `"dy"/"dx" = 2(sin^-1 "x") * "d"/"dx" (sin^-1 "x")`

`= 2 sin^-1 "x" xx 1/sqrt(1 - "x"^2)`

∴ `sqrt(1 - "x"^2)  "dy"/"dx" = 2 sin^-1 "x"`

∴ `(1 - "x"^2) ("dy"/"dx")^2 = 4(sin^-1 "x")^2`

∴ `(1 - "x"^2) ("dy"/"dx")^2 = 4("y - c")`    ....[By (1)]

Differentiating again w.r.t. x, we get

`(1 - "x"^2) * "d"/"dx" ("dy"/"dx")^2 + ("dy"/"dx")^2 * "d"/"dx" (1 - "x"^2) = 4 "d"/"dx" ("y - c")`

∴ `(1 - "x"^2) * 2 "dy"/"dx" * ("d"^2"y")/"dx"^2 - 2"x" ("dy"/"dx")^2 = 4 ("dy"/"dx" - 0)`

Cancelling `2 "dy"/"dx"` throughout, we get

`(1 - "x"^2) ("d"^2"y")/"dx"^2 - "x" "dy"/"dx" = 2`

Hence, y = (sin-1 x)2 + c is a solution of the D.E.

`(1 - "x"^2) ("d"^2"y")/"dx"^2 - "x" "dy"/"dx" = 2`

shaalaa.com
Formation of Differential Equations
  Is there an error in this question or solution?
Chapter 6: Differential Equations - Exercise 6.3 [Page 200]

APPEARS IN

RELATED QUESTIONS

Obtain the differential equation by eliminating the arbitrary constants from the following equation:

x3 + y3 = 4ax


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = Ae5x + Be-5x 


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = c1e2x + c2e5x 


Find the differential equation of the ellipse whose major axis is twice its minor axis.


Form the differential equation of family of lines parallel to the line 2x + 3y + 4 = 0.


In the following example verify that the given expression is a solution of the corresponding differential equation:

y = `"e"^"ax"; "x" "dy"/"dx" = "y" log "y"`


Solve the following differential equation:

`"dy"/"dx" = (1 + "y")^2/(1 + "x")^2`


Solve the following differential equation:

cos x . cos y dy − sin x . sin y dx = 0


Solve the following differential equation:

`"dy"/"dx" = - "k",` where k is a constant.


For the following differential equation find the particular solution satisfying the given condition:

`(e^y + 1) cos x + e^y sin x. dy/dx = 0,  "when" x = pi/6,` y = 0


Solve the following differential equation:

(x2 + y2)dx - 2xy dy = 0


Choose the correct option from the given alternatives:

The solution of `("x + y")^2 "dy"/"dx" = 1` is


In the following example verify that the given function is a solution of the differential equation.

`"xy" = "ae"^"x" + "be"^-"x" + "x"^2; "x" ("d"^2"y")/"dx"^2 + 2 "dy"/"dx" + "x"^2 = "xy" + 2`


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

(y - a)2 = b(x + 4)


Solve the following differential equation:

`"dy"/"dx" = ("2y" - "x")/("2y + x")`


Find the particular solution of the following differential equation:

y(1 + log x) = (log xx) `"dy"/"dx"`, when y(e) = e2


Select and write the correct alternative from the given option for the question

Solution of the equation `x  ("d"y)/("d"x)` = y log y is


Select and write the correct alternative from the given option for the question

The solution of `("d"y)/("d"x)` = 1 is


Select and write the correct alternative from the given option for the question 

The solutiion of `("d"y)/("d"x) + x^2/y^2` = 0 is


Find the differential equation of family of all ellipse whose major axis is twice the minor axis


Find the differential equation from the relation x2 + 4y2 = 4b2 


Find the differential equation of the family of all non-vertical lines in a plane


Find the differential equation of the family of all non-horizontal lines in a plane 


Find the differential equation of the family of circles passing through the origin and having their centres on the x-axis


Find the differential equations of the family of all the ellipses having foci on the y-axis and centre at the origin


Find the differential equation corresponding to the family of curves represented by the equation y = Ae8x + Be 8x, where A and B are arbitrary constants


The general solution of the differential equation of all circles having centre at A(- 1, 2) is ______.


The elimination of the arbitrary constant m from the equation y = emx gives the differential equation ______.


The differential equation for all the straight lines which are at the distance of 2 units from the origin is ______.


The differential equation for a2y = log x + b, is ______.


Solve the differential equation

cos2(x – 2y) = `1 - 2dy/dx`


Form the differential equation whose general solution is y = a cos 2x + b sin 2x.


Form the differential equation of all concentric circles having centre at the origin.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×