English

Solve the following differential equation: dydxyxdydx=(1+y)2(1+x)2 - Mathematics and Statistics

Advertisements
Advertisements

Question

Solve the following differential equation:

`"dy"/"dx" = (1 + "y")^2/(1 + "x")^2`

Sum

Solution

`"dy"/"dx" = (1 + "y")^2/(1 + "x")^2`

∴ `1/(1 + "y"^2) "dy" = 1/(1 + "x"^2) "dx"`

Integrating both sides, we get

`int 1/(1 + "y"^2) "dx" = int1/(1 + "x"^2) "dx"`

∴ tan-1 y = tan-1 x + c

This is the general solution.

shaalaa.com
Formation of Differential Equations
  Is there an error in this question or solution?
Chapter 6: Differential Equations - Exercise 6.3 [Page 201]

APPEARS IN

RELATED QUESTIONS

Obtain the differential equation by eliminating the arbitrary constants from the following equation:

Ax2 + By2 = 1


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = Ae5x + Be-5x 


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = e−2x (A cos x + B sin x)


Form the differential equation of family of lines having intercepts a and b on the co-ordinate ares respectively.


Find the differential equation of all circles having radius 9 and centre at point (h, k).


In the following example verify that the given expression is a solution of the corresponding differential equation:

y = e-x + Ax + B; `"e"^"x" ("d"^2"y")/"dx"^2 = 1`


In the following example verify that the given expression is a solution of the corresponding differential equation:

y = `"a" + "b"/"x"; "x" ("d"^2"y")/"dx"^2 + 2 "dy"/"dx" = 0`


Solve the following differential equation:

`"dy"/"dx" = - "k",` where k is a constant.


Solve the following differential equation:

`2"e"^("x + 2y") "dx" - 3"dy" = 0`


For the following differential equation find the particular solution satisfying the given condition:

`y(1 + log x) dx/dy - x log x = 0, y = e^2,` when x = e


For the following differential equation find the particular solution satisfying the given condition:

`cos("dy"/"dx") = "a", "a" ∈ "R", "y"(0) = 2`


Reduce the following differential equation to the variable separable form and hence solve:

`"x + y""dy"/"dx" = sec("x"^2 + "y"^2)`


Reduce the following differential equation to the variable separable form and hence solve:

`cos^2 ("x - 2y") = 1 - 2 "dy"/"dx"`


The integrating factor of linear differential equation `x dy/dx + 2y = x^2 log x` is ______.


Choose the correct option from the given alternatives:

The solution of the differential equation `"dy"/"dx" = sec "x" - "y" tan "x"`


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

`"y"^2 = "a"("b - x")("b + x")`


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = `sqrt("a" cos (log "x") + "b" sin (log "x"))`


Form the differential equation of the hyperbola whose length of transverse and conjugate axes are half of that of the given hyperbola `"x"^2/16 - "y"^2/36 = "k"`.


Find the particular solution of the following differential equation:

`("x + 2y"^2) "dy"/"dx" = "y",` when x = 2, y = 1


Find the particular solution of the following differential equation:

`"dy"/"dx" - 3"y" cot "x" = sin "2x"`, when `"y"(pi/2) = 2`


Find the particular solution of the following differential equation:

(x + y)dy + (x - y)dx = 0; when x = 1 = y


Find the particular solution of the following differential equation:

`2e ^(x/y) dx + (y - 2xe^(x/y)) dy = 0," When" y (0) = 1`


Select and write the correct alternative from the given option for the question

Solution of the equation `x  ("d"y)/("d"x)` = y log y is


Select and write the correct alternative from the given option for the question

General solution of `y - x ("d"y)/("d"x)` = 0 is


Find the differential equation of family of lines making equal intercepts on coordinate axes


Find the general solution of `("d"y)/("d"x) = (1 + y^2)/(1 + x^2)`


Form the differential equation of family of standard circle


Find the differential equation of the family of all non-horizontal lines in a plane 


Find the differential equation of the family of all the parabolas with latus rectum 4a and whose axes are parallel to the x-axis


Find the differential equation corresponding to the family of curves represented by the equation y = Ae8x + Be 8x, where A and B are arbitrary constants


Find the differential equation of the curve represented by xy = aex + be–x + x2


If m and n are respectively the order and degree of the differential equation of the family of parabolas with focus at the origin and X-axis as its axis, then mn - m + n = ______.


The differential equation of the family of circles touching Y-axis at the origin is ______.


The differential equation of all circles passing through the origin and having their centres on the X-axis is ______.


The differential equation for a2y = log x + b, is ______.


Solve the differential equation

cos2(x – 2y) = `1 - 2dy/dx`


Form the differential equation of all concentric circles having centre at the origin.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×