English

For the following differential equation find the particular solution satisfying the given condition: y(1+logx)dxdy-xlogx=0,y=e2, when x = e - Mathematics and Statistics

Advertisements
Advertisements

Question

For the following differential equation find the particular solution satisfying the given condition:

`y(1 + log x) dx/dy - x log x = 0, y = e^2,` when x = e

Sum

Solution

`y(1 + log x) dx/dy - x log x` = 0

∴ `(1 + log x)/(x log x)dx - dy/y` = 0

Integrating both sides, we get

∴ `int (1 + log x)/(x log x)dx - dy/y` = c1      .....(1)

Put x log x = t

Then `[x * d/dx (log x) + (log x) * d/dx (x)]dx` = dt

∴ `[x/x + (log x)(1)]dx` = dt

∴ `(1 + log x)dx` = dt

∴ `int (1 + log x)/(x log x)dx = intdt/t = log |t| = log |x log x|`

∴ From (1), the general solution is

log |x log x| – log |y| = log c, where c1 = log c

∴ log `|(x log x)/y|` = log c

∴ `(x log x)/y` = c

∴ x log x = cy

This is the general solution.

Now, y = `"e"^2`, when x = e

∴ e log e = c.e2

∴ 1 = c.e     ...[∵ log e = 1]

∴ c = `1/e`

∴ The particular solution is x log x = `(1/e)y`

∴ y = ex log x.

shaalaa.com
Formation of Differential Equations
  Is there an error in this question or solution?
Chapter 8: Differential Equation and Applications - Exercise 8.3 [Page 165]

APPEARS IN

Balbharati Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
Chapter 8 Differential Equation and Applications
Exercise 8.3 | Q 2.3 | Page 165

RELATED QUESTIONS

Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y2 = (x + c)3


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

(y - a)2 = 4(x - b)


Find the differential equation all parabolas having a length of latus rectum 4a and axis is parallel to the axis.


Find the differential equation of the ellipse whose major axis is twice its minor axis.


Form the differential equation of all parabolas whose axis is the X-axis.


Solve the following differential equation:

`"dy"/"dx" = (1 + "y")^2/(1 + "x")^2`


Solve the following differential equation:

`log  ("dy"/"dx") = 2"x" + 3"y"`


Solve the following differential equation:

`"y"^3 - "dy"/"dx" = "x"^2 "dy"/"dx"`


For the following differential equation find the particular solution satisfying the given condition:

`(e^y + 1) cos x + e^y sin x. dy/dx = 0,  "when" x = pi/6,` y = 0


For the following differential equation find the particular solution satisfying the given condition:

`cos("dy"/"dx") = "a", "a" ∈ "R", "y"(0) = 2`


Reduce the following differential equation to the variable separable form and hence solve:

`"x + y""dy"/"dx" = sec("x"^2 + "y"^2)`


Choose the correct option from the given alternatives:

x2 + y2 = a2 is a solution of


Choose the correct option from the given alternatives:

The solution of `"dy"/"dx" + "y" = cos "x" - sin "x"`


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

`"y"^2 = "a"("b - x")("b + x")`


In the following example verify that the given function is a solution of the differential equation.

`"y" = 3 "cos" (log "x") + 4 sin (log "x"); "x"^2 ("d"^2"y")/"dx"^2 + "x" "dy"/"dx" + "y" = 0`


In the following example verify that the given function is a solution of the differential equation.

`"xy" = "ae"^"x" + "be"^-"x" + "x"^2; "x" ("d"^2"y")/"dx"^2 + 2 "dy"/"dx" + "x"^2 = "xy" + 2`


In the following example verify that the given function is a solution of the differential equation.

`"x"^2 = "2y"^2 log "y",  "x"^2 + "y"^2 = "xy" "dx"/"dy"`


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

(y - a)2 = b(x + 4)


Form the differential equation of all parabolas which have 4b as latus rectum and whose axis is parallel to the Y-axis.


Solve the following differential equation:

`"dy"/"dx" = "x"^2"y" + "y"`


Solve the following differential equation:

`"dy"/"dx" = ("2y" - "x")/("2y + x")`


Find the particular solution of the following differential equation:

(x + y)dy + (x - y)dx = 0; when x = 1 = y


Find the particular solution of the following differential equation:

`2e ^(x/y) dx + (y - 2xe^(x/y)) dy = 0," When" y (0) = 1`


Select and write the correct alternative from the given option for the question 

The solutiion of `("d"y)/("d"x) + x^2/y^2` = 0 is


Find the differential equation of family of all ellipse whose major axis is twice the minor axis


Find the differential equation by eliminating arbitrary constants from the relation x2 + y2 = 2ax


Find the differential equation of the family of all non-horizontal lines in a plane 


Find the differential equation of the family of parabolas with vertex at (0, –1) and having axis along the y-axis


Find the differential equations of the family of all the ellipses having foci on the y-axis and centre at the origin


If `x^2 y^2 = sin^-1 sqrt(x^2 + y^2) + cos^-1 sqrt(x^2 + y^2)`, then `"dy"/"dx"` = ?


The differential equation for all the straight lines which are at the distance of 2 units from the origin is ______.


Solve the following differential equation:

`xsin(y/x)dy = [ysin(y/x) - x]dx`


The differential equation of all parabolas whose axis is Y-axis, is ______.


A particle is moving along the X-axis. Its acceleration at time t is proportional to its velocity at that time. Find the differential equation of the motion of the particle.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×