Advertisements
Advertisements
Question
Find the particular solution of the following differential equation:
(x + y)dy + (x - y)dx = 0; when x = 1 = y
Solution
(x + y)dy + (x - y)dx = 0
∴ (x + y)dy = - (x - y)dx
∴ `"dy"/"dx" = ("y - x")/("y + x")` ...(1)
Put y = vx ∴ `"dy"/"dx" = "v" + "x" "dv"/"dx"`
∴ (1) becomes, `"v" + "x" "dv"/"dx" = ("vx" - "x")/("vx" + "x") = ("v - 1")/("v + 1")`
∴ `"x" "dv"/"dx" = ("v - 1")/("v + 1") - "v" = ("v" - 1 - "v"^2 - "v")/("v + 1")`
∴ `"x" "dv"/"dx" = - ((1 + "v"^2)/(1 + "v"))`
∴ `(1 + "v")/(1 + "v"^2) "dv" = - 1/"x" "dx"`
Integrating both sides, we get
`int (1 + "v")/(1 + "v"^2) "dv" = - int 1/"x" "dx"`
∴ `int (1/(1 + "v"^2) + "v"/(1 + "v"^2))"dv" = - int 1/"x" "dx"`
∴ `int 1/(1 + "v"^2) "dv" + 1/2 int "2v"/(1 + "v"^2)"dv" = - int 1/"x" "dx"`
∴ `tan^-1 "v" + 1/2 log |1 + "v"^2| = - log "x" + "c"` .....`[because "d"/"dv" (1 + "v"^2) = 2"v" and int ("f"'(x))/("f"("x")) "dv" = log |"f"("v")| + "c"]`
∴ `tan^-1 ("y"/"x") + 1/2 log |1 + "y"^2/"x"^2| = log |"x"| + "c"`
∴ `tan^-1 ("y"/"x") + 1/2 log |("x"^2 + "y"^2)/"x"^2| = - log |"x"| + "c"`
∴ `tan^-1 ("y"/"x") + 1/2 log "x"^2 + "y"^2 - 1/2 log |"x"^2| = - log |"x"| + "c"`
∴ `tan^-1 ("y"/"x") + log sqrt("x"^2 + "y"^2) - log |"x"| = - log |"x"| + "c"`
∴ `tan^-1 ("y"/"x") + log sqrt("x"^2 + "y"^2) = "c"`
This is the general solution.
When x = 1 = y, we have
`tan^-1 (1) + log sqrt(1^2 + 1^2) = "c"`
∴ `tan^-1 (tan pi/4) + log sqrt 2 = "c"`
∴ c = `pi/4 + log sqrt2`
∴ the particular solution is
∴ `tan^-1 ("y"/"x") + log sqrt("x"^2 + "y"^2) = pi/4 + log sqrt2`
Notes
The answer in the textbook is incorrect.
APPEARS IN
RELATED QUESTIONS
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = A cos (log x) + B sin (log x)
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
(y - a)2 = 4(x - b)
Find the differential equation all parabolas having a length of latus rectum 4a and axis is parallel to the axis.
Find the differential equation of all circles having radius 9 and centre at point (h, k).
In the following example verify that the given expression is a solution of the corresponding differential equation:
y = e-x + Ax + B; `"e"^"x" ("d"^2"y")/"dx"^2 = 1`
In the following example verify that the given expression is a solution of the corresponding differential equation:
y = `"e"^"ax"; "x" "dy"/"dx" = "y" log "y"`
Solve the following differential equation:
`"sec"^2 "x" * "tan y" "dx" + "sec"^2 "y" * "tan x" "dy" = 0`
Solve the following differential equation:
`"dy"/"dx" = - "k",` where k is a constant.
Solve the following differential equation:
`(cos^2y)/x dy + (cos^2x)/y dx` = 0
Solve the following differential equation:
`"y"^3 - "dy"/"dx" = "x"^2 "dy"/"dx"`
Solve the following differential equation:
`2"e"^("x + 2y") "dx" - 3"dy" = 0`
Solve the following differential equation:
`"dy"/"dx" = "e"^("x + y") + "x"^2 "e"^"y"`
Reduce the following differential equation to the variable separable form and hence solve:
`"dy"/"dx" = cos("x + y")`
Reduce the following differential equation to the variable separable form and hence solve:
(2x - 2y + 3)dx - (x - y + 1)dy = 0, when x = 0, y = 1.
Choose the correct option from the given alternatives:
`"x"^2/"a"^2 - "y"^2/"b"^2 = 1` is a solution of
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
`"y"^2 = "a"("b - x")("b + x")`
In the following example verify that the given function is a solution of the differential equation.
`"x"^2 + "y"^2 = "r"^2; "x" "dy"/"dx" + "r" sqrt(1 + ("dy"/"dx")^2) = "y"`
In the following example verify that the given function is a solution of the differential equation.
`"x"^2 = "2y"^2 log "y", "x"^2 + "y"^2 = "xy" "dx"/"dy"`
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
(y - a)2 = b(x + 4)
Form the differential equation of all parabolas which have 4b as latus rectum and whose axis is parallel to the Y-axis.
Solve the following differential equation:
`"dy"/"dx" = "x"^2"y" + "y"`
Select and write the correct alternative from the given option for the question
Solution of the equation `x ("d"y)/("d"x)` = y log y is
Select and write the correct alternative from the given option for the question
General solution of `y - x ("d"y)/("d"x)` = 0 is
Find the differential equation of family of lines making equal intercepts on coordinate axes
Form the differential equation of all straight lines touching the circle x2 + y2 = r2
The differential equation of all lines perpendicular to the line 5x + 2y + 7 = 0 is ____________.
If m and n are respectively the order and degree of the differential equation of the family of parabolas with focus at the origin and X-axis as its axis, then mn - m + n = ______.
Form the differential equation of all lines which makes intercept 3 on x-axis.
The differential equation whose solution is (x – h)2 + (y – k)2 = a2 is (where a is a constant) ______.
For the curve C: (x2 + y2 – 3) + (x2 – y2 – 1)5 = 0, the value of 3y' – y3 y", at the point (α, α), α < 0, on C, is equal to ______.
If y = (tan–1 x)2 then `(x^2 + 1)^2 (d^2y)/(dx^2) + 2x(x^2 + 1) (dy)/(dx)` = ______.
The differential equation of all parabolas whose axis is Y-axis, is ______.
Form the differential equation of all concentric circles having centre at the origin.