Advertisements
Advertisements
Question
In the following example verify that the given function is a solution of the differential equation.
`"x"^2 + "y"^2 = "r"^2; "x" "dy"/"dx" + "r" sqrt(1 + ("dy"/"dx")^2) = "y"`
Solution
`"x"^2 + "y"^2 = "r"^2` .....(1)
Differentiating both sides w.r.t. x, we get
`2"x" + 2"y" "dy"/"dx" = 0`
∴ `2"y" "dy"/"dx" = - 2"x"`
∴ `"dy"/"dx" = - "x"/"y"`
∴ `"x" "dy"/"dx" + "r" sqrt(1 + ("dy"/"dx")^2)`
`= "x" (- "x"/"y") + "r" sqrt(1 + (- "x"/"y")^2)`
`= - "x"^2/"y" + "r" sqrt(1 + "x"^2/"y"^2)`
`= - "x"^2/"y" + "r" sqrt(("y"^2 + "x"^2)/"y"^2)`
`= - "x"^2/"y" + "r" sqrt("r"^2/"y"^2)` ....[By (1)]
`= - "x"^2/"y" + "r"^2/"y" = ("r"^2 - "x"^2)/"y"`
∴ `"y"^2/"y" = "y"`
Hence, x2 + y2 = r2 is a solution of the D.E.
`"x" "dy"/"dx" + "r" sqrt(1 + ("dy"/"dx")^2) = "y"`
APPEARS IN
RELATED QUESTIONS
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
x3 + y3 = 4ax
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
Ax2 + By2 = 1
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = c1e2x + c2e5x
Find the differential equation all parabolas having a length of latus rectum 4a and axis is parallel to the axis.
In the following example verify that the given expression is a solution of the corresponding differential equation:
y = xm; `"x"^2 ("d"^2"y")/"dx"^2 - "mx" "dy"/"dx" + "my" = 0`
In the following example verify that the given expression is a solution of the corresponding differential equation:
y = `"a" + "b"/"x"; "x" ("d"^2"y")/"dx"^2 + 2 "dy"/"dx" = 0`
Solve the following differential equation:
`"dy"/"dx" = (1 + "y")^2/(1 + "x")^2`
Solve the following differential equation:
`"y" - "x" "dy"/"dx" = 0`
For the following differential equation find the particular solution satisfying the given condition:
`(e^y + 1) cos x + e^y sin x. dy/dx = 0, "when" x = pi/6,` y = 0
Choose the correct option from the given alternatives:
The differential equation of all circles having their centres on the line y = 5 and touching the X-axis is
The integrating factor of linear differential equation `x dy/dx + 2y = x^2 log x` is ______.
The particular solution of `dy/dx = xe^(y - x)`, when x = y = 0 is ______.
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = a sin (x + b)
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
(y - a)2 = b(x + 4)
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = `sqrt("a" cos (log "x") + "b" sin (log "x"))`
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = `"Ae"^(3"x" + 1) + "Be"^(- 3"x" + 1)`
Solve the following differential equation:
x dy = (x + y + 1) dx
Solve the following differential equation:
`"dx"/"dy" + "8x" = 5"e"^(- 3"y")`
Find the particular solution of the following differential equation:
`("x + 2y"^2) "dy"/"dx" = "y",` when x = 2, y = 1
Find the particular solution of the following differential equation:
`"dy"/"dx" - 3"y" cot "x" = sin "2x"`, when `"y"(pi/2) = 2`
Select and write the correct alternative from the given option for the question
The solutiion of `("d"y)/("d"x) + x^2/y^2` = 0 is
Find the general solution of `("d"y)/("d"x) = (1 + y^2)/(1 + x^2)`
Find the differential equation by eliminating arbitrary constants from the relation y = (c1 + c2x)ex
Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0
The differential equation having y = (cos-1 x)2 + P (sin-1 x) + Q as its general solution, where P and Q are arbitrary constants, is
Find the differential equation of the family of all non-vertical lines in a plane
Find the differential equation of the family of all non-horizontal lines in a plane
Find the differential equation of the family of parabolas with vertex at (0, –1) and having axis along the y-axis
Find the differential equations of the family of all the ellipses having foci on the y-axis and centre at the origin
Choose the correct alternative:
The slope at any point of a curve y = f(x) is given by `("d"y)/("d"x) - 3x^2` and it passes through (-1, 1). Then the equation of the curve is
The differential equation whose solution is (x – h)2 + (y – k)2 = a2 is (where a is a constant) ______.
For the curve C: (x2 + y2 – 3) + (x2 – y2 – 1)5 = 0, the value of 3y' – y3 y", at the point (α, α), α < 0, on C, is equal to ______.
The differential equation for a2y = log x + b, is ______.
Form the differential equation whose general solution is y = a cos 2x + b sin 2x.
Find the particular solution of the differential equation `x^2 dy/dx + y^2 = xy dy/dx`, if y = 1 when x = 1.
Solve the differential equation
ex tan y dx + (1 + ex) sec2 y dy = 0
Form the differential equation of all concentric circles having centre at the origin.