Advertisements
Advertisements
Question
Find the particular solution of the following differential equation:
`"dy"/"dx" - 3"y" cot "x" = sin "2x"`, when `"y"(pi/2) = 2`
Solution
`"dy"/"dx" - 3"y" cot "x" = sin "2x"`
∴ `"dy"/"dx" - (3 "cot x")"y" = sin "2x"` ....(1)
This is the linear differential equation of the form
`"dx"/"dy" + "Px" = "Q"` where P = `- 3 cot "x"` and Q = sin 2x.
∴ I.F. = `"e"^(int "P dy") = "e"^(int - 3 cot "x" "dx")`
`= "e"^(- 3 log sin "x") = "e"^(log (sin "x")^-3)`
`= (sin "x")^-3 = 1/(sin^3"x")`
∴ the solution of (1) is given by
`"x" * ("I.F.") = int "Q" * ("I.F.") "dy" + "c"`
∴ `"y" xx 1/(sin^3 "x") = int sin "2x" xx 1/(sin "3x") "dx" + "c"`
∴ y cosec3 x = `int 2 sin "x" cos "x" xx 1/sin^3"x" "dx" + "c"`
∴ y cosec3 x = 2 `int (cos "x")/(sin^2 "x") "dx" + "c"`
Put sin x = t ∴ cos x dx = dt
∴ y cosec3 x = 2`int 1/"t"^2 "dt" + "c"`
∴ y cosec3 x = 2`int "t"^-2 "dt" + "c"`
∴ y cosec3 x = 2`["t"^-1/-1] + "c"`
∴ y cosec3 x = `(-2)/sin "x" + "c"`
∴ y cosec3 x + 2 cosec x = c
This is the general solution.
Now, `"y"(pi/2) = 2`, i.e. y = 2, when x = `pi/2`
∴ `2 "cosec"^3 pi/2 + 2 "cosec" pi/2 = "c"`
∴ 2(1)3 + 2(1) = c
∴ c = 4
∴ the particular solution is
y cosec3 x + 2 cosec x = 4
∴ y cosec2 x + 2 = 4 sin x
Notes
The answer in the textbook is incorrect.
APPEARS IN
RELATED QUESTIONS
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
x3 + y3 = 4ax
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
Ax2 + By2 = 1
Find the differential equation of the ellipse whose major axis is twice its minor axis.
Form the differential equation of family of lines parallel to the line 2x + 3y + 4 = 0.
In the following example verify that the given expression is a solution of the corresponding differential equation:
y = `(sin^-1 "x")^2 + "c"; (1 - "x"^2) ("d"^2"y")/"dx"^2 - "x" "dy"/"dx" = 2`
Solve the following differential equation:
`"y" - "x" "dy"/"dx" = 0`
Solve the following differential equation:
`"y"^3 - "dy"/"dx" = "x"^2 "dy"/"dx"`
Solve the following differential equation:
`2"e"^("x + 2y") "dx" - 3"dy" = 0`
Solve the following differential equation:
`"dy"/"dx" = "e"^("x + y") + "x"^2 "e"^"y"`
For the following differential equation find the particular solution satisfying the given condition:
`y(1 + log x) dx/dy - x log x = 0, y = e^2,` when x = e
For the following differential equation find the particular solution satisfying the given condition:
`(e^y + 1) cos x + e^y sin x. dy/dx = 0, "when" x = pi/6,` y = 0
Reduce the following differential equation to the variable separable form and hence solve:
`"x + y""dy"/"dx" = sec("x"^2 + "y"^2)`
Choose the correct option from the given alternatives:
The differential equation of y = `"c"^2 + "c"/"x"` is
Choose the correct option from the given alternatives:
The solution of `"dy"/"dx" = ("y" + sqrt("x"^2 - "y"^2))/"x"` is
Choose the correct option from the given alternatives:
The solution of `"dy"/"dx" + "y" = cos "x" - sin "x"`
Choose the correct option from the given alternatives:
The solution of the differential equation `"dy"/"dx" = sec "x" - "y" tan "x"`
In the following example verify that the given function is a solution of the differential equation.
`"y" = "e"^"ax" sin "bx"; ("d"^2"y")/"dx"^2 - 2"a" "dy"/"dx" + ("a"^2 + "b"^2)"y" = 0`
In the following example verify that the given function is a solution of the differential equation.
`"y" = 3 "cos" (log "x") + 4 sin (log "x"); "x"^2 ("d"^2"y")/"dx"^2 + "x" "dy"/"dx" + "y" = 0`
In the following example verify that the given function is a solution of the differential equation.
`"x"^2 = "2y"^2 log "y", "x"^2 + "y"^2 = "xy" "dx"/"dy"`
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = a sin (x + b)
Form the differential equation of all parabolas which have 4b as latus rectum and whose axis is parallel to the Y-axis.
Form the differential equation of all the lines which are normal to the line 3x + 2y + 7 = 0.
Solve the following differential equation:
`"dy"/"dx" = ("2y" - "x")/("2y + x")`
Find the particular solution of the following differential equation:
`("x + 2y"^2) "dy"/"dx" = "y",` when x = 2, y = 1
Find the general solution of `("d"y)/("d"x) = (1 + y^2)/(1 + x^2)`
Find the differential equation from the relation x2 + 4y2 = 4b2
Find the differential equation of the family of parabolas with vertex at (0, –1) and having axis along the y-axis
Find the differential equation corresponding to the family of curves represented by the equation y = Ae8x + Be –8x, where A and B are arbitrary constants
Choose the correct alternative:
The slope at any point of a curve y = f(x) is given by `("d"y)/("d"x) - 3x^2` and it passes through (-1, 1). Then the equation of the curve is
If `x^2 y^2 = sin^-1 sqrt(x^2 + y^2) + cos^-1 sqrt(x^2 + y^2)`, then `"dy"/"dx"` = ?
The differential equation representing the family of parabolas having vertex at origin and axis along positive direction of X-axis is ______.
The differential equation for all the straight lines which are at the distance of 2 units from the origin is ______.
If y = (tan–1 x)2 then `(x^2 + 1)^2 (d^2y)/(dx^2) + 2x(x^2 + 1) (dy)/(dx)` = ______.
The differential equation of the family of circles touching Y-axis at the origin is ______.
Solve the differential equation
cos2(x – 2y) = `1 - 2dy/dx`
Form the differential equation whose general solution is y = a cos 2x + b sin 2x.