Advertisements
Advertisements
Question
Solve the following differential equation:
`"dy"/"dx" = ("2y" - "x")/("2y + x")`
Solution
`"dy"/"dx" = ("2y" - "x")/("2y + x")` ....(1)
Put y = vx ∴ `"dy"/"dx" = "v + x""dv"/"dx"`
∴ (1) becomes, `"v + x""dv"/"dx" = ("2vx - x")/("2vx + x")`
∴ `"v + x""dv"/"dx" = ("2v" - 1)/("2v" + 1)`
∴ `"x""dv"/"dx" = ("2v" - 1)/("2v" + 1) - "v" = ("2v" - 1 - "2v"^2 - "v")/("2v + 1")`
∴ `"x""dv"/"dx" = - (("2v"^2 - "v" + 1)/("2v" + 1))`
∴ `("2v" + 1)/("2v"^2 - "v" + 1) "dv" = - 1/"x" "dx"`
Integrating both sides, we get
`int ("2v" + 1)/("2v"^2 - "v" + 1) "dv" = - int 1/"x" "dx"`
∴ `int (1/2 ("4v" - 1) + 3/2)/("2v"^2 - "v" + 1) "dv" = - int 1/"x" "dx"`
∴ `1/2 int ("4v" - 1)/("2v"^2 - "v" + 1) "dv" + 3/2 int 1/("2v"^2 - "v" + 1) "dv" = - int 1/"x"`
∴ `1/2 int ("4v" - 1)/("2v"^2 - "v" + 1) "dv" + 3/4 int 1/("v"^2 - 1/2"v" + 1/2)"dv" = - int 1/"x" "dx"`
∴ `1/2 int ("4v" - 1)/("2v"^2 - "v" + 1) "dv" + 3/4 int 1/(("v"^2 - 1/2"v" + 1/16) + 7/16) "dv" = - int 1/"x" "dx"`
∴ `1/2 int ("4v" - 1)/("2v"^2 - "v" + 1) "dv" + 3/4int 1/(("v" - 1/4)^2 + (sqrt7/4)^2)"dv" = - int 1/"x" "dx"`
∴ `1/2 log |2"v"^2 - "v" + 1| + 3/4 xx 1/((sqrt7/4)) tan^-1 |("v" - 1/4)/((sqrt7/4))| = - log |x| + "c"_1 .....[because "d"/"dv" (2"v"^2 - "v" + 1) = 4"v" - 1 and int ("f"'("v"))/("f"("v")) "dv" = log |"f"("v")| + c]`
∴ `1/2 log |2 ("y"^2/"x"^2) - "y"/"x" + 1| + 3/sqrt7 tan^-1 ((4("y"/"x") - 1)/sqrt7) = - log |"x"| + "c"_1`
∴ `1/2 log |(2"y"^2 - "xy" + "x"^2)/"x"^2| + 3/sqrt7 tan^-1 ((4"y - x")/(sqrt7"x")) = - log |"x"| + "c"_1`
∴ `log |("x"^2 - "xy" + "2y"^2)/"x"^2| + 6/sqrt7 tan^-1 (("4y - x")/(sqrt7"x")) = - 2 log |"x"| + 2"c"_1`
∴ `log |"x"^2 - "xy" + "2y"^2| - log"x"^2 + 6/sqrt7 tan^-1 (("4y - x")/(sqrt7"x")) = - log "x"^2 + "c"_1 "where" "c" = 2"c"_1`
∴ `log |"x"^2 - "xy" + "2y"^2| + 6/sqrt7 tan^-1 (("4y - x")/(sqrt7"x")) = "c"`
This is the general solution.
Notes
The answer in the textbook is incorrect.
APPEARS IN
RELATED QUESTIONS
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
(y - a)2 = 4(x - b)
Find the differential equation of the ellipse whose major axis is twice its minor axis.
In the following example verify that the given expression is a solution of the corresponding differential equation:
y = e-x + Ax + B; `"e"^"x" ("d"^2"y")/"dx"^2 = 1`
In the following example verify that the given expression is a solution of the corresponding differential equation:
y = `"e"^"ax"; "x" "dy"/"dx" = "y" log "y"`
Solve the following differential equation:
`"dy"/"dx" = (1 + "y")^2/(1 + "x")^2`
Solve the following differential equation:
`"dy"/"dx" = - "k",` where k is a constant.
For the following differential equation find the particular solution satisfying the given condition:
`y(1 + log x) dx/dy - x log x = 0, y = e^2,` when x = e
For the following differential equation find the particular solution satisfying the given condition:
`("x" + 1) "dy"/"dx" - 1 = 2"e"^-"y" , "y" = 0`, when x = 1
For the following differential equation find the particular solution satisfying the given condition:
`cos("dy"/"dx") = "a", "a" ∈ "R", "y"(0) = 2`
Reduce the following differential equation to the variable separable form and hence solve:
`"x + y""dy"/"dx" = sec("x"^2 + "y"^2)`
Choose the correct option from the given alternatives:
The solution of `"dy"/"dx" + "y" = cos "x" - sin "x"`
Choose the correct option from the given alternatives:
`"x"^2/"a"^2 - "y"^2/"b"^2 = 1` is a solution of
In the following example verify that the given function is a solution of the differential equation.
`"xy" = "ae"^"x" + "be"^-"x" + "x"^2; "x" ("d"^2"y")/"dx"^2 + 2 "dy"/"dx" + "x"^2 = "xy" + 2`
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = `sqrt("a" cos (log "x") + "b" sin (log "x"))`
Form the differential equation of all parabolas which have 4b as latus rectum and whose axis is parallel to the Y-axis.
Solve the following differential equation:
`"dy"/"dx" + "y cot x" = "x"^2 "cot x" + "2x"`
Select and write the correct alternative from the given option for the question
General solution of `y - x ("d"y)/("d"x)` = 0 is
Find the differential equation of family of lines making equal intercepts on coordinate axes
Find the differential equation by eliminating arbitrary constants from the relation y = (c1 + c2x)ex
Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0
Find the differential equation of the family of all non-vertical lines in a plane
Find the differential equation of the family of all the parabolas with latus rectum 4a and whose axes are parallel to the x-axis
Find the differential equation of the family of parabolas with vertex at (0, –1) and having axis along the y-axis
Find the differential equations of the family of all the ellipses having foci on the y-axis and centre at the origin
If m and n are respectively the order and degree of the differential equation of the family of parabolas with focus at the origin and X-axis as its axis, then mn - m + n = ______.
Form the differential equation of all lines which makes intercept 3 on x-axis.
Solve the following differential equation:
`xsin(y/x)dy = [ysin(y/x) - x]dx`
The differential equation whose solution is (x – h)2 + (y – k)2 = a2 is (where a is a constant) ______.
The differential equation representing the family of ellipse having foci either on the x-axis or on the y-axis centre at the origin and passing through the point (0, 3) is ______.
The differential equation of all parabolas whose axis is Y-axis, is ______.
The differential equation of the family of circles touching Y-axis at the origin is ______.
The differential equation of all parabolas having vertex at the origin and axis along positive Y-axis is ______.
Find the particular solution of the differential equation `x^2 dy/dx + y^2 = xy dy/dx`, if y = 1 when x = 1.
Solve the differential equation
ex tan y dx + (1 + ex) sec2 y dy = 0
A particle is moving along the X-axis. Its acceleration at time t is proportional to its velocity at that time. Find the differential equation of the motion of the particle.