English

For the following differential equation find the particular solution satisfying the given condition: xdydxeyy(x+1)dydx-1=2e-y,y=0, when x = 1 - Mathematics and Statistics

Advertisements
Advertisements

Question

For the following differential equation find the particular solution satisfying the given condition:

`("x" + 1) "dy"/"dx" - 1 = 2"e"^-"y" , "y" = 0`, when x = 1

Sum

Solution

`("x" + 1) "dy"/"dx" - 1 = 2"e"^-"y"`

∴ `("x" + 1) "dy"/"dx" = 2/"e"^"y" + 1 = (2 + "e"^"y")/"e"^"y"` 

∴ `"e"^"y"/(2 + "e"^"y") "dy" = 1/("x" + 1)`dx

Integrating both sides, we get

`int "e"^"y"/(2 + "e"^"y") "dy" = int 1/("x" + 1)`dx

∴ log |2 + ey| = log |x + 1| + log c    ......`[∵ "d"/"dy" (2 + "e"^"y") = "e"^"y" and int("f"'("y"))/("f"("y")) "dy" = log |"f"("y")| + "c"]`

∴ log |2 + ey| = log |c (x + 1)|

∴ 2 + ey = c(x + 1)

This is the general solution.

Now, y = 0, when x = 1

∴ 2 + e0 = c (1 + 1)

∴ 3 = 2c

∴ c = `3/2`

∴ the particular solution is `2 + "e"^"y" = 3/2("x" + 1)`

∴ 2(2 + ey) = 3(x + 1)

shaalaa.com
Formation of Differential Equations
  Is there an error in this question or solution?
Chapter 6: Differential Equations - Exercise 6.3 [Page 201]

APPEARS IN

RELATED QUESTIONS

Obtain the differential equation by eliminating the arbitrary constants from the following equation:

x3 + y3 = 4ax


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

c1x3 + c2y2 = 5


Find the differential equation of all circles having radius 9 and centre at point (h, k).


Solve the following differential equation:

`"dy"/"dx" = (1 + "y")^2/(1 + "x")^2`


Solve the following differential equation:

cos x . cos y dy − sin x . sin y dx = 0


Solve the following differential equation:

`"y"^3 - "dy"/"dx" = "x"^2 "dy"/"dx"`


For the following differential equation find the particular solution satisfying the given condition:

3ex tan y dx + (1 + ex) sec2 y dy = 0, when x = 0, y = π.


For the following differential equation find the particular solution satisfying the given condition:

`y(1 + log x) dx/dy - x log x = 0, y = e^2,` when x = e


Reduce the following differential equation to the variable separable form and hence solve:

`("x - y")^2 "dy"/"dx" = "a"^2`


Reduce the following differential equation to the variable separable form and hence solve:

`cos^2 ("x - 2y") = 1 - 2 "dy"/"dx"`


Choose the correct option from the given alternatives:

The differential equation of y = `"c"^2 + "c"/"x"` is


Choose the correct option from the given alternatives:

The differential equation of all circles having their centres on the line y = 5 and touching the X-axis is


Choose the correct option from the given alternatives:

The solution of `("x + y")^2 "dy"/"dx" = 1` is


The integrating factor of linear differential equation `x dy/dx + 2y = x^2 log x` is ______.


In the following example verify that the given function is a solution of the differential equation.

`"x"^2 + "y"^2 = "r"^2; "x" "dy"/"dx" + "r" sqrt(1 + ("dy"/"dx")^2) = "y"`


In the following example verify that the given function is a solution of the differential equation.

`"y" = 3 "cos" (log "x") + 4 sin (log "x"); "x"^2 ("d"^2"y")/"dx"^2 + "x" "dy"/"dx" + "y" = 0`


In the following example verify that the given function is a solution of the differential equation.

`"xy" = "ae"^"x" + "be"^-"x" + "x"^2; "x" ("d"^2"y")/"dx"^2 + 2 "dy"/"dx" + "x"^2 = "xy" + 2`


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

(y - a)2 = b(x + 4)


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = `"Ae"^(3"x" + 1) + "Be"^(- 3"x" + 1)`


Solve the following differential equation:

x dy = (x + y + 1) dx


Solve the following differential equation:

`"dy"/"dx" + "y cot x" = "x"^2 "cot x" + "2x"`


Find the particular solution of the following differential equation:

`("x + 2y"^2) "dy"/"dx" = "y",` when x = 2, y = 1


Select and write the correct alternative from the given option for the question 

The solutiion of `("d"y)/("d"x) + x^2/y^2` = 0 is


Find the differential equation of family of lines making equal intercepts on coordinate axes


Find the general solution of `("d"y)/("d"x) = (1 + y^2)/(1 + x^2)`


Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0


The differential equation having y = (cos-1 x)2 + P (sin-1 x) + Q as its general solution, where P and Q are arbitrary constants, is 


Find the differential equation of the family of all non-vertical lines in a plane


Find the differential equation of the family of all non-horizontal lines in a plane 


Find the differential equation of the family of circles passing through the origin and having their centres on the x-axis


Find the differential equation of the curve represented by xy = aex + be–x + x2


Choose the correct alternative:

The slope at any point of a curve y = f(x) is given by `("d"y)/("d"x) - 3x^2` and it passes through (-1, 1). Then the equation of the curve is


Solve the following differential equation:

`xsin(y/x)dy = [ysin(y/x) - x]dx`


For the curve C: (x2 + y2 – 3) + (x2 – y2 – 1)5 = 0, the value of 3y' – y3 y", at the point (α, α), α < 0, on C, is equal to ______.


The differential equation of all parabolas whose axis is Y-axis, is ______.


The differential equation of the family of circles touching Y-axis at the origin is ______.


A particle is moving along the X-axis. Its acceleration at time t is proportional to its velocity at that time. Find the differential equation of the motion of the particle.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×