Advertisements
Advertisements
Question
Solve the following differential equation:
`"y"^3 - "dy"/"dx" = "x"^2 "dy"/"dx"`
Solution
`"y"^3 - "dy"/"dx" = "x"^2 "dy"/"dx"`
∴ `"y"^3 = "dy"/"dx" + "x"^2 "dy"/"dx"`
∴ `"y"^3 = (1 + "x"^2)"dy"/"dx"`
∴ `1/(1 + "x"^2) "dx" = 1/"y"^3`dy
Integrating both sides, we get
`int 1/(1 + "x"^2) "dx" = int "y"^-3`dy
∴ `tan^-1 "x" = "y"^(-2)/-2 + "c"_1`
∴ `tan^-1 "x" = - 1/"2y"^2 + "c"_1`
∴ 2y2 tan-1 x = - 1 + 2c1y2
∴ 2y2 tan-1 x + 1 = cy2, where c = 2c1
This is the general solution.
APPEARS IN
RELATED QUESTIONS
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
c1x3 + c2y2 = 5
Find the differential equation all parabolas having a length of latus rectum 4a and axis is parallel to the axis.
Form the differential equation of family of lines parallel to the line 2x + 3y + 4 = 0.
In the following example verify that the given expression is a solution of the corresponding differential equation:
y = `"a" + "b"/"x"; "x" ("d"^2"y")/"dx"^2 + 2 "dy"/"dx" = 0`
Solve the following differential equation:
`"dy"/"dx" = (1 + "y")^2/(1 + "x")^2`
Solve the following differential equation:
`"y" - "x" "dy"/"dx" = 0`
For the following differential equation find the particular solution satisfying the given condition:
`(e^y + 1) cos x + e^y sin x. dy/dx = 0, "when" x = pi/6,` y = 0
Reduce the following differential equation to the variable separable form and hence solve:
`"x + y""dy"/"dx" = sec("x"^2 + "y"^2)`
Reduce the following differential equation to the variable separable form and hence solve:
`cos^2 ("x - 2y") = 1 - 2 "dy"/"dx"`
Solve the following differential equation:
(x2 + y2)dx - 2xy dy = 0
Choose the correct option from the given alternatives:
The differential equation of y = `"c"^2 + "c"/"x"` is
Choose the correct option from the given alternatives:
The solution of `("x + y")^2 "dy"/"dx" = 1` is
Choose the correct option from the given alternatives:
The solution of `"dy"/"dx" = ("y" + sqrt("x"^2 - "y"^2))/"x"` is
Choose the correct option from the given alternatives:
`"x"^2/"a"^2 - "y"^2/"b"^2 = 1` is a solution of
In the following example verify that the given function is a solution of the differential equation.
`"xy" = "ae"^"x" + "be"^-"x" + "x"^2; "x" ("d"^2"y")/"dx"^2 + 2 "dy"/"dx" + "x"^2 = "xy" + 2`
In the following example verify that the given function is a solution of the differential equation.
`"x"^2 = "2y"^2 log "y", "x"^2 + "y"^2 = "xy" "dx"/"dy"`
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
(y - a)2 = b(x + 4)
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = `sqrt("a" cos (log "x") + "b" sin (log "x"))`
Solve the following differential equation:
`"dy"/"dx" = ("2y" - "x")/("2y + x")`
Find the particular solution of the following differential equation:
`("x + 2y"^2) "dy"/"dx" = "y",` when x = 2, y = 1
Find the particular solution of the following differential equation:
(x + y)dy + (x - y)dx = 0; when x = 1 = y
The general solution of `(dy)/(dx)` = e−x is ______.
Select and write the correct alternative from the given option for the question
The solution of `("d"y)/("d"x)` = 1 is
Find the differential equation of family of lines making equal intercepts on coordinate axes
Find the differential equation from the relation x2 + 4y2 = 4b2
The differential equation having y = (cos-1 x)2 + P (sin-1 x) + Q as its general solution, where P and Q are arbitrary constants, is
Find the differential equation of the family of parabolas with vertex at (0, –1) and having axis along the y-axis
Choose the correct alternative:
The slope at any point of a curve y = f(x) is given by `("d"y)/("d"x) - 3x^2` and it passes through (-1, 1). Then the equation of the curve is
The rate of disintegration of a radio active element at time t is proportional to its mass, at the time. Then the time during which the original mass of 1.5 gm. Will disintegrate into its mass of 0.5 gm. is proportional to ______.
The differential equation representing the family of parabolas having vertex at origin and axis along positive direction of X-axis is ______.
If m and n are respectively the order and degree of the differential equation of the family of parabolas with focus at the origin and X-axis as its axis, then mn - m + n = ______.
The differential equation for all the straight lines which are at the distance of 2 units from the origin is ______.
For the curve C: (x2 + y2 – 3) + (x2 – y2 – 1)5 = 0, the value of 3y' – y3 y", at the point (α, α), α < 0, on C, is equal to ______.
The differential equation representing the family of ellipse having foci either on the x-axis or on the y-axis centre at the origin and passing through the point (0, 3) is ______.
Find the particular solution of the differential equation `x^2 dy/dx + y^2 = xy dy/dx`, if y = 1 when x = 1.