Advertisements
Advertisements
Question
Choose the correct option from the given alternatives:
The solution of `"dy"/"dx" = ("y" + sqrt("x"^2 - "y"^2))/"x"` is
Options
`sin^-1 ("y"/"x") = 2 log |"x"| + "c"`
`sin^-1 ("y"/"x") = log |"x"| + "c"`
`sin ("y"/"x") = log |"x"| + "c"`
`sin ("y"/"x") = 2 log |"x"| + "c"`
Solution
`sin^-1 ("y"/"x") = log |"x"| + "c"`
Hint:
`"dy"/"dx" = ("y" + sqrt("x"^2 - "y"^2))/"x"`
Put y = vx ∴ `"dy"/"dx" = "v + x" "dv"/"dx"`
∴ `"v + x" "dv"/"dx" = ("vx" + sqrt("x"^2 - "v"^2"x"^2))/"x" = "v" + sqrt(1 - "v"^2)`
∴ `"x" "dv"/"dx" = sqrt(1 - "v"^2)`
∴ `int 1/sqrt(1 - "v"^2) "dv" = int 1/"x" "dx"`
∴ sin-1 v = log |x| + c
∴ sin-1 v `("y"/"x") = log |x| + "c"`.
APPEARS IN
RELATED QUESTIONS
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = a + `"a"/"x"`
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = e−2x (A cos x + B sin x)
In the following example verify that the given expression is a solution of the corresponding differential equation:
xy = log y +c; `"dy"/"dx" = "y"^2/(1 - "xy")`
In the following example verify that the given expression is a solution of the corresponding differential equation:
y = `(sin^-1 "x")^2 + "c"; (1 - "x"^2) ("d"^2"y")/"dx"^2 - "x" "dy"/"dx" = 2`
In the following example verify that the given expression is a solution of the corresponding differential equation:
y = e-x + Ax + B; `"e"^"x" ("d"^2"y")/"dx"^2 = 1`
In the following example verify that the given expression is a solution of the corresponding differential equation:
y = xm; `"x"^2 ("d"^2"y")/"dx"^2 - "mx" "dy"/"dx" + "my" = 0`
Solve the following differential equation:
`"y" - "x" "dy"/"dx" = 0`
Solve the following differential equation:
`"dy"/"dx" = - "k",` where k is a constant.
Solve the following differential equation:
`(cos^2y)/x dy + (cos^2x)/y dx` = 0
For the following differential equation find the particular solution satisfying the given condition:
3ex tan y dx + (1 + ex) sec2 y dy = 0, when x = 0, y = π.
Reduce the following differential equation to the variable separable form and hence solve:
`"x + y""dy"/"dx" = sec("x"^2 + "y"^2)`
Choose the correct option from the given alternatives:
The differential equation of y = `"c"^2 + "c"/"x"` is
Choose the correct option from the given alternatives:
The solution of `("x + y")^2 "dy"/"dx" = 1` is
The integrating factor of linear differential equation `x dy/dx + 2y = x^2 log x` is ______.
The particular solution of `dy/dx = xe^(y - x)`, when x = y = 0 is ______.
In the following example verify that the given function is a solution of the differential equation.
`"y" = "e"^"ax" sin "bx"; ("d"^2"y")/"dx"^2 - 2"a" "dy"/"dx" + ("a"^2 + "b"^2)"y" = 0`
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
(y - a)2 = b(x + 4)
Solve the following differential equation:
`"dy"/"dx" = "x"^2"y" + "y"`
Solve the following differential equation:
y log y = (log y2 - x) `"dy"/"dx"`
Solve the following differential equation:
`"dx"/"dy" + "8x" = 5"e"^(- 3"y")`
Find the particular solution of the following differential equation:
y(1 + log x) = (log xx) `"dy"/"dx"`, when y(e) = e2
Find the particular solution of the following differential equation:
`2e ^(x/y) dx + (y - 2xe^(x/y)) dy = 0," When" y (0) = 1`
Find the differential equation of family of lines making equal intercepts on coordinate axes
Find the differential equation by eliminating arbitrary constants from the relation x2 + y2 = 2ax
Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0
The differential equation having y = (cos-1 x)2 + P (sin-1 x) + Q as its general solution, where P and Q are arbitrary constants, is
Form the differential equation of all straight lines touching the circle x2 + y2 = r2
Find the differential equation of the family of all the parabolas with latus rectum 4a and whose axes are parallel to the x-axis
Find the differential equation of the family of parabolas with vertex at (0, –1) and having axis along the y-axis
The elimination of the arbitrary constant m from the equation y = emx gives the differential equation ______.
The differential equation representing the family of parabolas having vertex at origin and axis along positive direction of X-axis is ______.
For the curve C: (x2 + y2 – 3) + (x2 – y2 – 1)5 = 0, the value of 3y' – y3 y", at the point (α, α), α < 0, on C, is equal to ______.
The differential equation of all parabolas having vertex at the origin and axis along positive Y-axis is ______.
Solve the differential equation
cos2(x – 2y) = `1 - 2dy/dx`
Form the differential equation whose general solution is y = a cos 2x + b sin 2x.
Form the differential equation of all concentric circles having centre at the origin.