Advertisements
Advertisements
Question
Find the particular solution of the following differential equation:
`2e ^(x/y) dx + (y - 2xe^(x/y)) dy = 0," When" y (0) = 1`
Solution
`(1 + 2"e"^("x"//"y"))"dx" + 2"e"^("x"//"y")(1 - "x"/"y")"dy" = 0`
∴ `(1 + 2"e"^("x"//"y"))"dx" = - 2"e"^("x"//"y")(1 - "x"/"y")"dy"`
∴ `(1 + 2"e"^("x"//"y"))"dx" = 2"e"^("x"//"y")("x"/"y" - 1)"dy"`
∴ `"dy"/"dx" = (2"e"^("x"//"y")("x"/"y" - 1))/(1 + 2"e"^("x"//"y"))` .....(1)
Put x = vy
∴ `"dx"/"dy" = "v" + "y" "dv"/"dy"`
∴ (1) becomes, `"v" + "y" "dv"/"dy" = (2"e"^"v"("v - 1"))/(1 + "2e"^"v")`
∴ `"y" "dv"/"dy" = (2"e"^"v"("v - 1"))/(1 + "2e"^"v") - "v"`
`= (2"ve"^"v" - 2"e"^"v" - "v" - 2"ve"^"v")/(1 + "2e"^"v")`
`= - (("v" + 2"e"^"v")/(1 + "2e"^"v"))`
∴ `((1 + 2"e"^"v")/("v" + 2"e"^"v"))"dv" ≡ - 1/"y" "dy"`
Integrating both sides, we get
`int ((1 + 2"e"^"v")/("v" + 2"e"^"v"))"dv" ≡ - int 1/"y" "dy"`
∴ log |v + 2ev| = - log y + log c ....`[because "d"/"dx" ("v" + "2e"^"v") = 1 + 2"e"^"v" and int("f"'("v"))/("f"("v")) "dv" = log |"f"("v")| + "c"]`
∴ log |v + 2ev| + log y = log c
∴ log |y (v + 2ev)| = log c
∴ y(v + 2ev) = c
∴ `"y"("x"/"y" + 2"e"^("x"//"y"))`= c
∴ x + 2yex/y = c
This is the general solution.
Now, y(0) = 1, i.e. when x = 0, y = 1
∴ 0 + 2(1)e0 = c
∴ c = 2
∴ the particular solution is x + 2yex/y = 2
Notes
The question is modified.
APPEARS IN
RELATED QUESTIONS
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y2 = (x + c)3
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
(y - a)2 = 4(x - b)
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = e−2x (A cos x + B sin x)
Form the differential equation of all parabolas whose axis is the X-axis.
In the following example verify that the given expression is a solution of the corresponding differential equation:
y = `(sin^-1 "x")^2 + "c"; (1 - "x"^2) ("d"^2"y")/"dx"^2 - "x" "dy"/"dx" = 2`
In the following example verify that the given expression is a solution of the corresponding differential equation:
y = e-x + Ax + B; `"e"^"x" ("d"^2"y")/"dx"^2 = 1`
Solve the following differential equation:
`"dy"/"dx" = (1 + "y")^2/(1 + "x")^2`
Solve the following differential equation:
`"y"^3 - "dy"/"dx" = "x"^2 "dy"/"dx"`
Reduce the following differential equation to the variable separable form and hence solve:
`"x + y""dy"/"dx" = sec("x"^2 + "y"^2)`
Reduce the following differential equation to the variable separable form and hence solve:
(2x - 2y + 3)dx - (x - y + 1)dy = 0, when x = 0, y = 1.
Choose the correct option from the given alternatives:
The solution of `("x + y")^2 "dy"/"dx" = 1` is
Choose the correct option from the given alternatives:
The solution of `"dy"/"dx" + "y" = cos "x" - sin "x"`
Choose the correct option from the given alternatives:
`"x"^2/"a"^2 - "y"^2/"b"^2 = 1` is a solution of
In the following example verify that the given function is a solution of the differential equation.
`"y" = 3 "cos" (log "x") + 4 sin (log "x"); "x"^2 ("d"^2"y")/"dx"^2 + "x" "dy"/"dx" + "y" = 0`
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = `"Ae"^(3"x" + 1) + "Be"^(- 3"x" + 1)`
Form the differential equation of the hyperbola whose length of transverse and conjugate axes are half of that of the given hyperbola `"x"^2/16 - "y"^2/36 = "k"`.
Solve the following differential equation:
y log y = (log y2 - x) `"dy"/"dx"`
Find the particular solution of the following differential equation:
y(1 + log x) = (log xx) `"dy"/"dx"`, when y(e) = e2
The general solution of `(dy)/(dx)` = e−x is ______.
Select and write the correct alternative from the given option for the question
General solution of `y - x ("d"y)/("d"x)` = 0 is
Form the differential equation of y = (c1 + c2)ex
Find the differential equation from the relation x2 + 4y2 = 4b2
The differential equation having y = (cos-1 x)2 + P (sin-1 x) + Q as its general solution, where P and Q are arbitrary constants, is
Find the differential equation of the family of parabolas with vertex at (0, –1) and having axis along the y-axis
Find the differential equation of the curve represented by xy = aex + be–x + x2
Choose the correct alternative:
The slope at any point of a curve y = f(x) is given by `("d"y)/("d"x) - 3x^2` and it passes through (-1, 1). Then the equation of the curve is
The rate of disintegration of a radio active element at time t is proportional to its mass, at the time. Then the time during which the original mass of 1.5 gm. Will disintegrate into its mass of 0.5 gm. is proportional to ______.
The general solution of the differential equation of all circles having centre at A(- 1, 2) is ______.
The differential equation representing the family of parabolas having vertex at origin and axis along positive direction of X-axis is ______.
Form the differential equation of all lines which makes intercept 3 on x-axis.
Solve the following differential equation:
`xsin(y/x)dy = [ysin(y/x) - x]dx`
If y = (tan–1 x)2 then `(x^2 + 1)^2 (d^2y)/(dx^2) + 2x(x^2 + 1) (dy)/(dx)` = ______.
The differential equation of the family of circles touching Y-axis at the origin is ______.
The differential equation of all circles passing through the origin and having their centres on the X-axis is ______.
A particle is moving along the X-axis. Its acceleration at time t is proportional to its velocity at that time. Find the differential equation of the motion of the particle.