English

Reduce the following differential equation to the variable separable form and hence solve: (2x - 2y + 3)dx - (x - y + 1)dy = 0, when x = 0, y = 1. - Mathematics and Statistics

Advertisements
Advertisements

Question

Reduce the following differential equation to the variable separable form and hence solve:

(2x - 2y + 3)dx - (x - y + 1)dy = 0, when x = 0, y = 1.

Sum

Solution

(2x - 2y + 3)dx - (x - y + 1)dy = 0

∴ (x - y + 1)dy = (2x - 2y + 3) dx

∴ `"dy"/"dx" = (2("x - y" + 3))/(("x - y") + 1)`   ....(1)

Put x - y = u. Then `1 - "dy"/"dx" = "du"/"dx"`

∴ `"dy"/"dx" = 1 - "du"/"dx"`

∴ (1) becomes, `1 - "du"/"dx" = (2"u" + 3)/("u" + 1)` 

∴ `"du"/"dx" = 1 - (2"u" + 3)/("u" + 1) = ("u" + 1 - 2"u" - 3)/("u + 1")`

∴ `"du"/"dx" = (- "u" - 2)/("u" + 1) = - (("u + 2")/("u + 1"))`

∴ `("u + 1")/("u + 2")`du = - dx

Integrating both sides, we get

`int ("u + 1")/("u + 2") "du" = - int 1 "dx"`

∴ `int (("u" + 2) - 1)/("u" + 2) "du" = - int 1 "dx"`

∴ `int (1 - 1/("u + 2")) "du" = - int 1 "dx"`

∴ u - log |u + 2| = - x + c

∴ x - y - log |x - y + 2| = - x + c

∴ (2x - y) - log |x - y + 2| = c

This is the general solution.

Now, y = 1, when x = 0

∴ (0 - 1) - log |0 - 1 + 2| = c

∴ - 1 - 0 = c

∴ c = - 1

∴ the particular solution is

(2x - y) - log |x - y + 2| = - 1

∴ (2x - y) - log |x - y + 2| + 1 = 0

shaalaa.com
Formation of Differential Equations
  Is there an error in this question or solution?
Chapter 6: Differential Equations - Exercise 6.3 [Page 201]

APPEARS IN

RELATED QUESTIONS

Obtain the differential equation by eliminating the arbitrary constants from the following equation:

x3 + y3 = 4ax


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = A cos (log x) + B sin (log x)


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y2 = (x + c)3


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = a + `"a"/"x"`


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = e−2x (A cos x + B sin x)


Form the differential equation of family of lines having intercepts a and b on the co-ordinate ares respectively.


Find the differential equation of the ellipse whose major axis is twice its minor axis.


In the following example verify that the given expression is a solution of the corresponding differential equation:

xy = log y +c; `"dy"/"dx" = "y"^2/(1 - "xy")`


In the following example verify that the given expression is a solution of the corresponding differential equation:

y = e-x + Ax + B; `"e"^"x" ("d"^2"y")/"dx"^2 = 1`


In the following example verify that the given expression is a solution of the corresponding differential equation:

y = xm; `"x"^2 ("d"^2"y")/"dx"^2 - "mx" "dy"/"dx" + "my" = 0`


In the following example verify that the given expression is a solution of the corresponding differential equation:

y = `"a" + "b"/"x"; "x" ("d"^2"y")/"dx"^2 + 2 "dy"/"dx" = 0`


Solve the following differential equation:

`"y" - "x" "dy"/"dx" = 0`


Solve the following differential equation:

`(cos^2y)/x dy + (cos^2x)/y dx` = 0


For the following differential equation find the particular solution satisfying the given condition:

`("x" + 1) "dy"/"dx" - 1 = 2"e"^-"y" , "y" = 0`, when x = 1


Reduce the following differential equation to the variable separable form and hence solve:

`"dy"/"dx" = cos("x + y")`


Reduce the following differential equation to the variable separable form and hence solve:

`cos^2 ("x - 2y") = 1 - 2 "dy"/"dx"`


Choose the correct option from the given alternatives:

The differential equation of y = `"c"^2 + "c"/"x"` is


Choose the correct option from the given alternatives:

The solution of `"dy"/"dx" + "y" = cos "x" - sin "x"`


Choose the correct option from the given alternatives:

`"x"^2/"a"^2 - "y"^2/"b"^2 = 1` is a solution of


In the following example verify that the given function is a solution of the differential equation.

`"x"^2 + "y"^2 = "r"^2; "x" "dy"/"dx" + "r" sqrt(1 + ("dy"/"dx")^2) = "y"`


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

(y - a)2 = b(x + 4)


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = `"Ae"^(3"x" + 1) + "Be"^(- 3"x" + 1)`


Solve the following differential equation:

y log y = (log y2 - x) `"dy"/"dx"`


Find the particular solution of the following differential equation:

`("x + 2y"^2) "dy"/"dx" = "y",` when x = 2, y = 1


Find the general solution of `("d"y)/("d"x) = (1 + y^2)/(1 + x^2)`


Find the differential equation from the relation x2 + 4y2 = 4b2 


The family of curves y = `e^("a" sin x)`, where a is an arbitrary constant, is represented by the differential equation.


Find the differential equation corresponding to the family of curves represented by the equation y = Ae8x + Be 8x, where A and B are arbitrary constants


If `x^2 y^2 = sin^-1 sqrt(x^2 + y^2) + cos^-1 sqrt(x^2 + y^2)`, then `"dy"/"dx"` = ?


The differential equation representing the family of parabolas having vertex at origin and axis along positive direction of X-axis is ______.


Solve the following differential equation:

`xsin(y/x)dy = [ysin(y/x) - x]dx`


The differential equation whose solution is (x – h)2 + (y – k)2 = a2 is (where a is a constant) ______.


If y = (tan–1 x)2 then `(x^2 + 1)^2 (d^2y)/(dx^2) + 2x(x^2 + 1) (dy)/(dx)` = ______.


Form the differential equation of all concentric circles having centre at the origin.


A particle is moving along the X-axis. Its acceleration at time t is proportional to its velocity at that time. Find the differential equation of the motion of the particle.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×