English

Obtain the differential equation by eliminating the arbitrary constants from the following equation: y = e−2x (A cos x + B sin x) - Mathematics and Statistics

Advertisements
Advertisements

Question

Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = e−2x (A cos x + B sin x)

Sum

Solution

y = e2x (A cos x + B sin x)

∴ e2x y = A cos x + B sin x      ....(1)

Differentiating twice w.r.t. x, we get

`e^(2x) * dy/dx + y * e^(2x) xx 2 = A(- sin x) + B cos x`

∴ `e^(2x)(dy/dx + 2y) = - A sin x + B cos x`

Differentiating again w.r.t. x, we get

`e^(2x)((d^2y)/dx^2 + 2dy/dx) + (dy/dx + 2y) * e^(2x) xx 2 = - A cos x + B (- sin x)`

∴ `e^(2x)((d^2y)/dx^2 + 2dy/dx + 2dy/dx + 4y) = - (A cos x + B sin x)`

∴ `e^(2x)((d^2y)/dx^2 + 4 dy/dx + 4y) = - e^(2x).y`     ....[By (1)]

∴ `(d^2y)/dx^2 + 4 dy/dx + 4y = - y`

∴ `(d^2y)/dx^2 + 4 dy/dx + 5y = 0`

This is the required D.E.

shaalaa.com

Notes

The answer in the textbook is incorrect.

Formation of Differential Equations
  Is there an error in this question or solution?
Chapter 6: Differential Equations - Exercise 6.2 [Page 196]

APPEARS IN

RELATED QUESTIONS

Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = c1e2x + c2e5x 


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

c1x3 + c2y2 = 5


Find the differential equation of all circles having radius 9 and centre at point (h, k).


In the following example verify that the given expression is a solution of the corresponding differential equation:

xy = log y +c; `"dy"/"dx" = "y"^2/(1 - "xy")`


In the following example verify that the given expression is a solution of the corresponding differential equation:

y = `(sin^-1 "x")^2 + "c"; (1 - "x"^2) ("d"^2"y")/"dx"^2 - "x" "dy"/"dx" = 2`


In the following example verify that the given expression is a solution of the corresponding differential equation:

y = e-x + Ax + B; `"e"^"x" ("d"^2"y")/"dx"^2 = 1`


Solve the following differential equation:

`log  ("dy"/"dx") = 2"x" + 3"y"`


Solve the following differential equation:

`"sec"^2 "x" * "tan y"  "dx" + "sec"^2 "y" * "tan x"  "dy" = 0` 


For the following differential equation find the particular solution satisfying the given condition:

`("x" + 1) "dy"/"dx" - 1 = 2"e"^-"y" , "y" = 0`, when x = 1


Solve the following differential equation:

(x2 + y2)dx - 2xy dy = 0


Choose the correct option from the given alternatives:

x2 + y2 = a2 is a solution of


Choose the correct option from the given alternatives:

The differential equation of all circles having their centres on the line y = 5 and touching the X-axis is


Choose the correct option from the given alternatives:

The solution of `("x + y")^2 "dy"/"dx" = 1` is


The integrating factor of linear differential equation `x dy/dx + 2y = x^2 log x` is ______.


In the following example verify that the given function is a solution of the differential equation.

`"x"^2 + "y"^2 = "r"^2; "x" "dy"/"dx" + "r" sqrt(1 + ("dy"/"dx")^2) = "y"`


In the following example verify that the given function is a solution of the differential equation.

`"xy" = "ae"^"x" + "be"^-"x" + "x"^2; "x" ("d"^2"y")/"dx"^2 + 2 "dy"/"dx" + "x"^2 = "xy" + 2`


Form the differential equation of all parabolas which have 4b as latus rectum and whose axis is parallel to the Y-axis.


Solve the following differential equation:

`"dy"/"dx" = ("2y" - "x")/("2y + x")`


Find the particular solution of the following differential equation:

y(1 + log x) = (log xx) `"dy"/"dx"`, when y(e) = e2


Select and write the correct alternative from the given option for the question

Solution of the equation `x  ("d"y)/("d"x)` = y log y is


Select and write the correct alternative from the given option for the question 

The solutiion of `("d"y)/("d"x) + x^2/y^2` = 0 is


Find the differential equation of family of all ellipse whose major axis is twice the minor axis


Find the differential equation by eliminating arbitrary constants from the relation x2 + y2 = 2ax


Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0


Find the differential equation of the family of all non-vertical lines in a plane


Form the differential equation of all straight lines touching the circle x2 + y2 = r2


Find the differential equation corresponding to the family of curves represented by the equation y = Ae8x + Be 8x, where A and B are arbitrary constants


Find the differential equation of the curve represented by xy = aex + be–x + x2


The differential equation of all lines perpendicular to the line 5x + 2y + 7 = 0 is ____________.


The differential equation for all the straight lines which are at the distance of 2 units from the origin is ______.


Solve the following differential equation:

`xsin(y/x)dy = [ysin(y/x) - x]dx`


The differential equation of all circles passing through the origin and having their centres on the X-axis is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×