Advertisements
Advertisements
Question
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = e−2x (A cos x + B sin x)
Solution
y = e−2x (A cos x + B sin x)
∴ e2x y = A cos x + B sin x ....(1)
Differentiating twice w.r.t. x, we get
`e^(2x) * dy/dx + y * e^(2x) xx 2 = A(- sin x) + B cos x`
∴ `e^(2x)(dy/dx + 2y) = - A sin x + B cos x`
Differentiating again w.r.t. x, we get
`e^(2x)((d^2y)/dx^2 + 2dy/dx) + (dy/dx + 2y) * e^(2x) xx 2 = - A cos x + B (- sin x)`
∴ `e^(2x)((d^2y)/dx^2 + 2dy/dx + 2dy/dx + 4y) = - (A cos x + B sin x)`
∴ `e^(2x)((d^2y)/dx^2 + 4 dy/dx + 4y) = - e^(2x).y` ....[By (1)]
∴ `(d^2y)/dx^2 + 4 dy/dx + 4y = - y`
∴ `(d^2y)/dx^2 + 4 dy/dx + 5y = 0`
This is the required D.E.
Notes
The answer in the textbook is incorrect.
APPEARS IN
RELATED QUESTIONS
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = c1e2x + c2e5x
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
c1x3 + c2y2 = 5
Find the differential equation of all circles having radius 9 and centre at point (h, k).
In the following example verify that the given expression is a solution of the corresponding differential equation:
xy = log y +c; `"dy"/"dx" = "y"^2/(1 - "xy")`
In the following example verify that the given expression is a solution of the corresponding differential equation:
y = `(sin^-1 "x")^2 + "c"; (1 - "x"^2) ("d"^2"y")/"dx"^2 - "x" "dy"/"dx" = 2`
In the following example verify that the given expression is a solution of the corresponding differential equation:
y = e-x + Ax + B; `"e"^"x" ("d"^2"y")/"dx"^2 = 1`
Solve the following differential equation:
`log ("dy"/"dx") = 2"x" + 3"y"`
Solve the following differential equation:
`"sec"^2 "x" * "tan y" "dx" + "sec"^2 "y" * "tan x" "dy" = 0`
For the following differential equation find the particular solution satisfying the given condition:
`("x" + 1) "dy"/"dx" - 1 = 2"e"^-"y" , "y" = 0`, when x = 1
Solve the following differential equation:
(x2 + y2)dx - 2xy dy = 0
Choose the correct option from the given alternatives:
x2 + y2 = a2 is a solution of
Choose the correct option from the given alternatives:
The differential equation of all circles having their centres on the line y = 5 and touching the X-axis is
Choose the correct option from the given alternatives:
The solution of `("x + y")^2 "dy"/"dx" = 1` is
The integrating factor of linear differential equation `x dy/dx + 2y = x^2 log x` is ______.
In the following example verify that the given function is a solution of the differential equation.
`"x"^2 + "y"^2 = "r"^2; "x" "dy"/"dx" + "r" sqrt(1 + ("dy"/"dx")^2) = "y"`
In the following example verify that the given function is a solution of the differential equation.
`"xy" = "ae"^"x" + "be"^-"x" + "x"^2; "x" ("d"^2"y")/"dx"^2 + 2 "dy"/"dx" + "x"^2 = "xy" + 2`
Form the differential equation of all parabolas which have 4b as latus rectum and whose axis is parallel to the Y-axis.
Solve the following differential equation:
`"dy"/"dx" = ("2y" - "x")/("2y + x")`
Find the particular solution of the following differential equation:
y(1 + log x) = (log xx) `"dy"/"dx"`, when y(e) = e2
Select and write the correct alternative from the given option for the question
Solution of the equation `x ("d"y)/("d"x)` = y log y is
Select and write the correct alternative from the given option for the question
The solutiion of `("d"y)/("d"x) + x^2/y^2` = 0 is
Find the differential equation of family of all ellipse whose major axis is twice the minor axis
Find the differential equation by eliminating arbitrary constants from the relation x2 + y2 = 2ax
Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0
Find the differential equation of the family of all non-vertical lines in a plane
Form the differential equation of all straight lines touching the circle x2 + y2 = r2
Find the differential equation corresponding to the family of curves represented by the equation y = Ae8x + Be –8x, where A and B are arbitrary constants
Find the differential equation of the curve represented by xy = aex + be–x + x2
The differential equation of all lines perpendicular to the line 5x + 2y + 7 = 0 is ____________.
The differential equation for all the straight lines which are at the distance of 2 units from the origin is ______.
Solve the following differential equation:
`xsin(y/x)dy = [ysin(y/x) - x]dx`
The differential equation of all circles passing through the origin and having their centres on the X-axis is ______.