Advertisements
Advertisements
Question
Find the differential equation corresponding to the family of curves represented by the equation y = Ae8x + Be –8x, where A and B are arbitrary constants
Solution
Given y = Ae8x + Be–8x .........(1)
Where A and B are arbitrary constants differentiating equation (1) twice successively because we have two arbitrary constant, we get
`("d"y)/("d"x)` = Ae8x + Be–8x (– 8)
`("d"y)/("d"x)` = 8Ae8x – 8Be–8x ........(2)
`("d"^2y)/("d"x^2)` = 8Ae8x (8) – Be–8x (– 8)
= 64Ae8x + 64Be–8x
= 64[Ae8x + Be–8x] .........(3)
Substituting equation (1) in eqn (3), we get
`("d"^2y)/("d"x^2)` = 64y
`("d"^2y)/("d"x^2) - 64y` = 0 is the required differential equation.
APPEARS IN
RELATED QUESTIONS
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
c1x3 + c2y2 = 5
In the following example verify that the given expression is a solution of the corresponding differential equation:
xy = log y +c; `"dy"/"dx" = "y"^2/(1 - "xy")`
In the following example verify that the given expression is a solution of the corresponding differential equation:
y = xm; `"x"^2 ("d"^2"y")/"dx"^2 - "mx" "dy"/"dx" + "my" = 0`
Solve the following differential equation:
`"dy"/"dx" = - "k",` where k is a constant.
Solve the following differential equation:
`"y"^3 - "dy"/"dx" = "x"^2 "dy"/"dx"`
Reduce the following differential equation to the variable separable form and hence solve:
(2x - 2y + 3)dx - (x - y + 1)dy = 0, when x = 0, y = 1.
Solve the following differential equation:
(x2 + y2)dx - 2xy dy = 0
Choose the correct option from the given alternatives:
The differential equation of y = `"c"^2 + "c"/"x"` is
The integrating factor of linear differential equation `x dy/dx + 2y = x^2 log x` is ______.
Choose the correct option from the given alternatives:
`"x"^2/"a"^2 - "y"^2/"b"^2 = 1` is a solution of
Solve the following differential equation:
`"dy"/"dx" = "x"^2"y" + "y"`
Form the differential equation of family of standard circle
The family of curves y = `e^("a" sin x)`, where a is an arbitrary constant, is represented by the differential equation.
Form the differential equation of all straight lines touching the circle x2 + y2 = r2
Find the differential equations of the family of all the ellipses having foci on the y-axis and centre at the origin
The general solution of the differential equation of all circles having centre at A(- 1, 2) is ______.
Find the particular solution of the differential equation `x^2 dy/dx + y^2 = xy dy/dx`, if y = 1 when x = 1.
A particle is moving along the X-axis. Its acceleration at time t is proportional to its velocity at that time. Find the differential equation of the motion of the particle.