English

Solve the following differential equation: dydxxyydydx=x2y+y - Mathematics and Statistics

Advertisements
Advertisements

Question

Solve the following differential equation:

`"dy"/"dx" = "x"^2"y" + "y"`

Sum

Solution

`"dy"/"dx" = "x"^2"y" + "y"`

∴ `"dy"/"dx" = "y"("x"^2 + 1)`

∴ `1/"y" "dy" = ("x"^2 + 1)"dx"`

Integrating both sides, we get

`int 1/"y" "dy" = int ("x"^2 + 1)"dx"`

∴ `log |"y"| = "x"^3/3 + "x" + "c"`

This is the general solution.

shaalaa.com
Formation of Differential Equations
  Is there an error in this question or solution?
Chapter 6: Differential Equations - Miscellaneous exercise 2 [Page 217]

APPEARS IN

Balbharati Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
Chapter 6 Differential Equations
Miscellaneous exercise 2 | Q 5.2 | Page 217

RELATED QUESTIONS

Form the differential equation of family of lines having intercepts a and b on the co-ordinate ares respectively.


In the following example verify that the given expression is a solution of the corresponding differential equation:

y = `"e"^"ax"; "x" "dy"/"dx" = "y" log "y"`


Solve the following differential equation:

`log  ("dy"/"dx") = 2"x" + 3"y"`


Solve the following differential equation:

`"y" - "x" "dy"/"dx" = 0`


Solve the following differential equation:

`"dy"/"dx" = - "k",` where k is a constant.


Solve the following differential equation:

`"y"^3 - "dy"/"dx" = "x"^2 "dy"/"dx"`


For the following differential equation find the particular solution satisfying the given condition:

`y(1 + log x) dx/dy - x log x = 0, y = e^2,` when x = e


For the following differential equation find the particular solution satisfying the given condition:

`("x" + 1) "dy"/"dx" - 1 = 2"e"^-"y" , "y" = 0`, when x = 1


Reduce the following differential equation to the variable separable form and hence solve:

`"x + y""dy"/"dx" = sec("x"^2 + "y"^2)`


Choose the correct option from the given alternatives:

The differential equation of all circles having their centres on the line y = 5 and touching the X-axis is


The particular solution of `dy/dx = xe^(y - x)`, when x = y = 0 is ______.


Choose the correct option from the given alternatives:

`"x"^2/"a"^2 - "y"^2/"b"^2 = 1` is a solution of


In the following example verify that the given function is a solution of the differential equation.

`"x"^2 + "y"^2 = "r"^2; "x" "dy"/"dx" + "r" sqrt(1 + ("dy"/"dx")^2) = "y"`


In the following example verify that the given function is a solution of the differential equation.

`"xy" = "ae"^"x" + "be"^-"x" + "x"^2; "x" ("d"^2"y")/"dx"^2 + 2 "dy"/"dx" + "x"^2 = "xy" + 2`


In the following example verify that the given function is a solution of the differential equation.

`"x"^2 = "2y"^2 log "y",  "x"^2 + "y"^2 = "xy" "dx"/"dy"`


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = a sin (x + b)


Form the differential equation of all parabolas which have 4b as latus rectum and whose axis is parallel to the Y-axis.


Form the differential equation of all the lines which are normal to the line 3x + 2y + 7 = 0.


Solve the following differential equation:

`"dx"/"dy" + "8x" = 5"e"^(- 3"y")`


Find the particular solution of the following differential equation:

`("x + 2y"^2) "dy"/"dx" = "y",` when x = 2, y = 1


The general solution of `(dy)/(dx)` = e−x is ______.


Find the differential equation of family of lines making equal intercepts on coordinate axes


Find the general solution of `("d"y)/("d"x) = (1 + y^2)/(1 + x^2)`


Find the differential equation of the family of all non-horizontal lines in a plane 


Form the differential equation of all straight lines touching the circle x2 + y2 = r2


Find the differential equations of the family of all the ellipses having foci on the y-axis and centre at the origin


Choose the correct alternative:

The slope at any point of a curve y = f(x) is given by `("d"y)/("d"x) - 3x^2` and it passes through (-1, 1). Then the equation of the curve is


The differential equation for all the straight lines which are at the distance of 2 units from the origin is ______.


Solve the following differential equation:

`xsin(y/x)dy = [ysin(y/x) - x]dx`


The differential equation of all parabolas whose axis is Y-axis, is ______.


The differential equation of the family of circles touching Y-axis at the origin is ______.


The differential equation of all circles passing through the origin and having their centres on the X-axis is ______.


The differential equation of all parabolas having vertex at the origin and axis along positive Y-axis is ______.


Solve the differential equation

ex tan y dx + (1 + ex) sec2 y dy = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×