Advertisements
Advertisements
Question
Find the differential equation of the family of all non-horizontal lines in a plane
Solution
The equation of the family of non horizontal
Lines in a,plane ax + by = 1, a ≠ 0 and b ∈ R
Given equation is ax + by = 1 .......(1)
Differentiating equation (1) with respect to ‘y’, we get
`"a" ("d"x)/("d"y) + "b"` = 0
∵ 2 arbitrary constant,
∴ Differentiating twice continuously
Again differentiating we get
`"a" ("d"^2x)/("d"y^2)` = 0 ......[∵ a ≠ 0]
`("d"^2x)/("d"y^2)` = 0 is a required differential equation.
APPEARS IN
RELATED QUESTIONS
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
x3 + y3 = 4ax
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
c1x3 + c2y2 = 5
Form the differential equation of family of lines parallel to the line 2x + 3y + 4 = 0.
In the following example verify that the given expression is a solution of the corresponding differential equation:
y = `"e"^"ax"; "x" "dy"/"dx" = "y" log "y"`
Solve the following differential equation:
`"sec"^2 "x" * "tan y" "dx" + "sec"^2 "y" * "tan x" "dy" = 0`
Solve the following differential equation:
`(cos^2y)/x dy + (cos^2x)/y dx` = 0
For the following differential equation find the particular solution satisfying the given condition:
`(e^y + 1) cos x + e^y sin x. dy/dx = 0, "when" x = pi/6,` y = 0
The integrating factor of linear differential equation `x dy/dx + 2y = x^2 log x` is ______.
The particular solution of `dy/dx = xe^(y - x)`, when x = y = 0 is ______.
Form the differential equation of all parabolas which have 4b as latus rectum and whose axis is parallel to the Y-axis.
Solve the following differential equation:
`"dy"/"dx" = "x"^2"y" + "y"`
Solve the following differential equation:
`"dy"/"dx" = ("2y" - "x")/("2y + x")`
Solve the following differential equation:
y log y = (log y2 - x) `"dy"/"dx"`
Find the particular solution of the following differential equation:
`2e ^(x/y) dx + (y - 2xe^(x/y)) dy = 0," When" y (0) = 1`
Select and write the correct alternative from the given option for the question
General solution of `y - x ("d"y)/("d"x)` = 0 is
Find the differential equation of the family of circles passing through the origin and having their centres on the x-axis
Find the differential equation of the curve represented by xy = aex + be–x + x2
Choose the correct alternative:
The slope at any point of a curve y = f(x) is given by `("d"y)/("d"x) - 3x^2` and it passes through (-1, 1). Then the equation of the curve is
Find the particular solution of the differential equation `x^2 dy/dx + y^2 = xy dy/dx`, if y = 1 when x = 1.
Form the differential equation of all concentric circles having centre at the origin.