Advertisements
Advertisements
Question
Form the differential equation of all straight lines touching the circle x2 + y2 = r2
Solution
Given circle equation be x2 + y2 = r2
Let y = mx + c be all straight lines which towards the given circle x2 + y2 = r2
The condition for y = mx + c ……. (1)
Be a tangent to the circle x2 + y2 = r2
Be c2 = r2(1 + m2)
⇒ c = `sqrt(1 + "m"^2)`
Substituting c value in equation (1), we get
y = `"mx" + "r" sqrt(1 + "m"^2)`
y – mx = `"r" sqrt(1 + "m"^2)` ......(2)
Differentiating equation (2) w.r.t x, we get
`("d"y)/("d"x) - "m"` = 0
`("d"y)/("d"x)` = m ........(3)
Substituting equation (3) in equation (2), we get
`y - x(("d"y)/("d"x)) = "r" sqrt(1 + (("d"y)/("d"x))^2`
Squaring on both sides, we get
`[y - x ("d"y)/"d"x]^2 = ["r" sqrt(1 + (("d"y)/("d"x))^2]]^2`
`[y - x ("d"y)/"d"x]^2 = "r"^2 [1 + (("d"y)/("d"x))^2]`
Which is a required differential equation.
APPEARS IN
RELATED QUESTIONS
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
(y - a)2 = 4(x - b)
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
c1x3 + c2y2 = 5
Form the differential equation of all parabolas whose axis is the X-axis.
In the following example verify that the given expression is a solution of the corresponding differential equation:
xy = log y +c; `"dy"/"dx" = "y"^2/(1 - "xy")`
Solve the following differential equation:
`"dy"/"dx" = - "k",` where k is a constant.
Choose the correct option from the given alternatives:
The differential equation of y = `"c"^2 + "c"/"x"` is
The particular solution of `dy/dx = xe^(y - x)`, when x = y = 0 is ______.
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
(y - a)2 = b(x + 4)
Form the differential equation of the hyperbola whose length of transverse and conjugate axes are half of that of the given hyperbola `"x"^2/16 - "y"^2/36 = "k"`.
Select and write the correct alternative from the given option for the question
The solution of `("d"y)/("d"x)` = 1 is
Select and write the correct alternative from the given option for the question
The solutiion of `("d"y)/("d"x) + x^2/y^2` = 0 is
Find the general solution of `("d"y)/("d"x) = (1 + y^2)/(1 + x^2)`
Form the differential equation of y = (c1 + c2)ex
Find the differential equation of family of all ellipse whose major axis is twice the minor axis
Find the differential equation of the family of all the parabolas with latus rectum 4a and whose axes are parallel to the x-axis
Find the differential equations of the family of all the ellipses having foci on the y-axis and centre at the origin
Find the differential equation of the curve represented by xy = aex + be–x + x2
The differential equation of all lines perpendicular to the line 5x + 2y + 7 = 0 is ____________.