English

Form the differential equation of the hyperbola whose length of transverse and conjugate axes are half of that of the given hyperbola xykx216-y236=k - Mathematics and Statistics

Advertisements
Advertisements

Question

Form the differential equation of the hyperbola whose length of transverse and conjugate axes are half of that of the given hyperbola `"x"^2/16 - "y"^2/36 = "k"`.

Sum

Solution

The equation of the hyperbola is

`"x"^2/16 - "y"^2/36 = "k"` i.e. `"x"^2/"16 k" - "y"^2/"36k" = 1`

Comparing this equation with `"x"^2/"a"^2 - "y"^2/"b"^2 = 1`, we get

a2 = 16k, b2 = 36k 

∴ a = `4sqrt"k", "b" = 6sqrt"k"`

∴ l(transverse axis) = 2a = `8sqrt"k"`

and l(conjugate axis) = 2b = `12sqrt"k"`

Let 2A and 2B be the lengths of the transverse and conjugate axes of the required hyperbola.

Then according to the given condition

2A = a = `4sqrt"k" and 2"B" = "b" = 6sqrt"k"`

∴ A = `2sqrt"k"` and B = `3sqrt"k"`

∴ equation of the required hyperbola is

`"x"^2/"A"^2 - "y"^2/"B"^2 = 1`

i.e. `"x"^2/"4k" - "y"^2/"9k" = 1`

∴ 9x2 - 4y2 = 36k, where k is an arbitrary constant.

Differentiating w.r.t. x, we get

`9 xx "2x" - 4 xx "2y" "dy"/"dx" = 0`

∴ `"9x" - "4y" "dy"/"dx" = 0`

This is the required D.E.

shaalaa.com
Formation of Differential Equations
  Is there an error in this question or solution?
Chapter 6: Differential Equations - Miscellaneous exercise 2 [Page 217]

APPEARS IN

Balbharati Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
Chapter 6 Differential Equations
Miscellaneous exercise 2 | Q 4.5 | Page 217

RELATED QUESTIONS

Obtain the differential equation by eliminating the arbitrary constants from the following equation:

x3 + y3 = 4ax


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = A cos (log x) + B sin (log x)


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = Ae5x + Be-5x 


In the following example verify that the given expression is a solution of the corresponding differential equation:

xy = log y +c; `"dy"/"dx" = "y"^2/(1 - "xy")`


In the following example verify that the given expression is a solution of the corresponding differential equation:

y = e-x + Ax + B; `"e"^"x" ("d"^2"y")/"dx"^2 = 1`


Solve the following differential equation:

`"y" - "x" "dy"/"dx" = 0`


Solve the following differential equation:

cos x . cos y dy − sin x . sin y dx = 0


Solve the following differential equation:

`"dy"/"dx" = - "k",` where k is a constant.


For the following differential equation find the particular solution satisfying the given condition:

3ex tan y dx + (1 + ex) sec2 y dy = 0, when x = 0, y = π.


For the following differential equation find the particular solution satisfying the given condition:

`(e^y + 1) cos x + e^y sin x. dy/dx = 0,  "when" x = pi/6,` y = 0


Choose the correct option from the given alternatives:

The solution of `"dy"/"dx" + "y" = cos "x" - sin "x"`


Choose the correct option from the given alternatives:

The solution of the differential equation `"dy"/"dx" = sec "x" - "y" tan "x"`


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = a sin (x + b)


Find the particular solution of the following differential equation:

`("x + 2y"^2) "dy"/"dx" = "y",` when x = 2, y = 1


Find the particular solution of the following differential equation:

`"dy"/"dx" - 3"y" cot "x" = sin "2x"`, when `"y"(pi/2) = 2`


Find the particular solution of the following differential equation:

(x + y)dy + (x - y)dx = 0; when x = 1 = y


Find the particular solution of the following differential equation:

y(1 + log x) = (log xx) `"dy"/"dx"`, when y(e) = e2


Find the particular solution of the following differential equation:

`2e ^(x/y) dx + (y - 2xe^(x/y)) dy = 0," When" y (0) = 1`


Find the differential equation by eliminating arbitrary constants from the relation y = (c1 + c2x)ex 


The differential equation having y = (cos-1 x)2 + P (sin-1 x) + Q as its general solution, where P and Q are arbitrary constants, is 


Find the differential equation of the family of all non-vertical lines in a plane


Form the differential equation of all straight lines touching the circle x2 + y2 = r2


Find the differential equation of the family of all the parabolas with latus rectum 4a and whose axes are parallel to the x-axis


Find the differential equation of the family of parabolas with vertex at (0, –1) and having axis along the y-axis


The rate of disintegration of a radio active element at time t is proportional to its mass, at the time. Then the time during which the original mass of 1.5 gm. Will disintegrate into its mass of 0.5 gm. is proportional to ______.


The differential equation representing the family of parabolas having vertex at origin and axis along positive direction of X-axis is ______.


The differential equation for all the straight lines which are at the distance of 2 units from the origin is ______.


For the curve C: (x2 + y2 – 3) + (x2 – y2 – 1)5 = 0, the value of 3y' – y3 y", at the point (α, α), α < 0, on C, is equal to ______.


The differential equation of all parabolas having vertex at the origin and axis along positive Y-axis is ______.


Form the differential equation whose general solution is y = a cos 2x + b sin 2x.


Form the differential equation of all concentric circles having centre at the origin.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×