Advertisements
Advertisements
Question
Form the differential equation of the hyperbola whose length of transverse and conjugate axes are half of that of the given hyperbola `"x"^2/16 - "y"^2/36 = "k"`.
Solution
The equation of the hyperbola is
`"x"^2/16 - "y"^2/36 = "k"` i.e. `"x"^2/"16 k" - "y"^2/"36k" = 1`
Comparing this equation with `"x"^2/"a"^2 - "y"^2/"b"^2 = 1`, we get
a2 = 16k, b2 = 36k
∴ a = `4sqrt"k", "b" = 6sqrt"k"`
∴ l(transverse axis) = 2a = `8sqrt"k"`
and l(conjugate axis) = 2b = `12sqrt"k"`
Let 2A and 2B be the lengths of the transverse and conjugate axes of the required hyperbola.
Then according to the given condition
2A = a = `4sqrt"k" and 2"B" = "b" = 6sqrt"k"`
∴ A = `2sqrt"k"` and B = `3sqrt"k"`
∴ equation of the required hyperbola is
`"x"^2/"A"^2 - "y"^2/"B"^2 = 1`
i.e. `"x"^2/"4k" - "y"^2/"9k" = 1`
∴ 9x2 - 4y2 = 36k, where k is an arbitrary constant.
Differentiating w.r.t. x, we get
`9 xx "2x" - 4 xx "2y" "dy"/"dx" = 0`
∴ `"9x" - "4y" "dy"/"dx" = 0`
This is the required D.E.
APPEARS IN
RELATED QUESTIONS
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
x3 + y3 = 4ax
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = A cos (log x) + B sin (log x)
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = Ae5x + Be-5x
In the following example verify that the given expression is a solution of the corresponding differential equation:
xy = log y +c; `"dy"/"dx" = "y"^2/(1 - "xy")`
In the following example verify that the given expression is a solution of the corresponding differential equation:
y = e-x + Ax + B; `"e"^"x" ("d"^2"y")/"dx"^2 = 1`
Solve the following differential equation:
`"y" - "x" "dy"/"dx" = 0`
Solve the following differential equation:
cos x . cos y dy − sin x . sin y dx = 0
Solve the following differential equation:
`"dy"/"dx" = - "k",` where k is a constant.
For the following differential equation find the particular solution satisfying the given condition:
3ex tan y dx + (1 + ex) sec2 y dy = 0, when x = 0, y = π.
For the following differential equation find the particular solution satisfying the given condition:
`(e^y + 1) cos x + e^y sin x. dy/dx = 0, "when" x = pi/6,` y = 0
Choose the correct option from the given alternatives:
The solution of `"dy"/"dx" + "y" = cos "x" - sin "x"`
Choose the correct option from the given alternatives:
The solution of the differential equation `"dy"/"dx" = sec "x" - "y" tan "x"`
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = a sin (x + b)
Find the particular solution of the following differential equation:
`("x + 2y"^2) "dy"/"dx" = "y",` when x = 2, y = 1
Find the particular solution of the following differential equation:
`"dy"/"dx" - 3"y" cot "x" = sin "2x"`, when `"y"(pi/2) = 2`
Find the particular solution of the following differential equation:
(x + y)dy + (x - y)dx = 0; when x = 1 = y
Find the particular solution of the following differential equation:
y(1 + log x) = (log xx) `"dy"/"dx"`, when y(e) = e2
Find the particular solution of the following differential equation:
`2e ^(x/y) dx + (y - 2xe^(x/y)) dy = 0," When" y (0) = 1`
Find the differential equation by eliminating arbitrary constants from the relation y = (c1 + c2x)ex
The differential equation having y = (cos-1 x)2 + P (sin-1 x) + Q as its general solution, where P and Q are arbitrary constants, is
Find the differential equation of the family of all non-vertical lines in a plane
Form the differential equation of all straight lines touching the circle x2 + y2 = r2
Find the differential equation of the family of all the parabolas with latus rectum 4a and whose axes are parallel to the x-axis
Find the differential equation of the family of parabolas with vertex at (0, –1) and having axis along the y-axis
The rate of disintegration of a radio active element at time t is proportional to its mass, at the time. Then the time during which the original mass of 1.5 gm. Will disintegrate into its mass of 0.5 gm. is proportional to ______.
The differential equation representing the family of parabolas having vertex at origin and axis along positive direction of X-axis is ______.
The differential equation for all the straight lines which are at the distance of 2 units from the origin is ______.
For the curve C: (x2 + y2 – 3) + (x2 – y2 – 1)5 = 0, the value of 3y' – y3 y", at the point (α, α), α < 0, on C, is equal to ______.
The differential equation of all parabolas having vertex at the origin and axis along positive Y-axis is ______.
Form the differential equation whose general solution is y = a cos 2x + b sin 2x.
Form the differential equation of all concentric circles having centre at the origin.