हिंदी

Form the differential equation of the hyperbola whose length of transverse and conjugate axes are half of that of the given hyperbola xykx216-y236=k - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Form the differential equation of the hyperbola whose length of transverse and conjugate axes are half of that of the given hyperbola `"x"^2/16 - "y"^2/36 = "k"`.

योग

उत्तर

The equation of the hyperbola is

`"x"^2/16 - "y"^2/36 = "k"` i.e. `"x"^2/"16 k" - "y"^2/"36k" = 1`

Comparing this equation with `"x"^2/"a"^2 - "y"^2/"b"^2 = 1`, we get

a2 = 16k, b2 = 36k 

∴ a = `4sqrt"k", "b" = 6sqrt"k"`

∴ l(transverse axis) = 2a = `8sqrt"k"`

and l(conjugate axis) = 2b = `12sqrt"k"`

Let 2A and 2B be the lengths of the transverse and conjugate axes of the required hyperbola.

Then according to the given condition

2A = a = `4sqrt"k" and 2"B" = "b" = 6sqrt"k"`

∴ A = `2sqrt"k"` and B = `3sqrt"k"`

∴ equation of the required hyperbola is

`"x"^2/"A"^2 - "y"^2/"B"^2 = 1`

i.e. `"x"^2/"4k" - "y"^2/"9k" = 1`

∴ 9x2 - 4y2 = 36k, where k is an arbitrary constant.

Differentiating w.r.t. x, we get

`9 xx "2x" - 4 xx "2y" "dy"/"dx" = 0`

∴ `"9x" - "4y" "dy"/"dx" = 0`

This is the required D.E.

shaalaa.com
Formation of Differential Equations
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Differential Equations - Miscellaneous exercise 2 [पृष्ठ २१७]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 6 Differential Equations
Miscellaneous exercise 2 | Q 4.5 | पृष्ठ २१७

संबंधित प्रश्न

Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y2 = (x + c)3


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = a + `"a"/"x"`


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = c1e2x + c2e5x 


Find the differential equation all parabolas having a length of latus rectum 4a and axis is parallel to the axis.


Form the differential equation of all parabolas whose axis is the X-axis.


In the following example verify that the given expression is a solution of the corresponding differential equation:

y = xm; `"x"^2 ("d"^2"y")/"dx"^2 - "mx" "dy"/"dx" + "my" = 0`


In the following example verify that the given expression is a solution of the corresponding differential equation:

y = `"e"^"ax"; "x" "dy"/"dx" = "y" log "y"`


Solve the following differential equation:

`"dy"/"dx" = (1 + "y")^2/(1 + "x")^2`


Solve the following differential equation:

`log  ("dy"/"dx") = 2"x" + 3"y"`


Solve the following differential equation:

`"dy"/"dx" = - "k",` where k is a constant.


Solve the following differential equation:

`(cos^2y)/x dy + (cos^2x)/y dx` = 0


For the following differential equation find the particular solution satisfying the given condition:

3ex tan y dx + (1 + ex) sec2 y dy = 0, when x = 0, y = π.


For the following differential equation find the particular solution satisfying the given condition:

`y(1 + log x) dx/dy - x log x = 0, y = e^2,` when x = e


Reduce the following differential equation to the variable separable form and hence solve:

`"dy"/"dx" = cos("x + y")`


Solve the following differential equation:

(x2 + y2)dx - 2xy dy = 0


Choose the correct option from the given alternatives:

The solution of `"dy"/"dx" + "y" = cos "x" - sin "x"`


Choose the correct option from the given alternatives:

The solution of the differential equation `"dy"/"dx" = sec "x" - "y" tan "x"`


In the following example verify that the given function is a solution of the differential equation.

`"y" = "e"^"ax" sin "bx"; ("d"^2"y")/"dx"^2 - 2"a" "dy"/"dx" + ("a"^2 + "b"^2)"y" = 0`


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = `"Ae"^(3"x" + 1) + "Be"^(- 3"x" + 1)`


Solve the following differential equation:

`"dy"/"dx" = ("2y" - "x")/("2y + x")`


Solve the following differential equation:

`"dy"/"dx" + "y cot x" = "x"^2 "cot x" + "2x"`


Select and write the correct alternative from the given option for the question

Solution of the equation `x  ("d"y)/("d"x)` = y log y is


Form the differential equation of family of standard circle


Form the differential equation of y = (c1 + c2)ex 


Find the differential equation of the family of all non-horizontal lines in a plane 


Form the differential equation of all straight lines touching the circle x2 + y2 = r2


Find the differential equation of the family of parabolas with vertex at (0, –1) and having axis along the y-axis


The rate of disintegration of a radio active element at time t is proportional to its mass, at the time. Then the time during which the original mass of 1.5 gm. Will disintegrate into its mass of 0.5 gm. is proportional to ______.


If `x^2 y^2 = sin^-1 sqrt(x^2 + y^2) + cos^-1 sqrt(x^2 + y^2)`, then `"dy"/"dx"` = ?


The differential equation of all lines perpendicular to the line 5x + 2y + 7 = 0 is ____________.


The elimination of the arbitrary constant m from the equation y = emx gives the differential equation ______.


Form the differential equation of all lines which makes intercept 3 on x-axis.


The differential equation of all parabolas having vertex at the origin and axis along positive Y-axis is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×