Advertisements
Advertisements
प्रश्न
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = `"Ae"^(3"x" + 1) + "Be"^(- 3"x" + 1)`
उत्तर
y = `"Ae"^(3"x" + 1) + "Be"^(- 3"x" + 1)` ....(1)
Differentiating twice w.r.t. x, we get
`"dy"/"dx" = "Ae"^(3"x" + 1) * "d"/"dx" (3"x" + 1) + "Be"^(- 3"x" + 1) * "d"/"dx" (- 3"x" + 1)`
`= "Ae"^(3"x" + 1) xx (3 + 1 + 0) + "Be"^(- 3"x" + 1) xx (- 3 xx 1 + 0)`
`= 3"Ae"^(3"x" + 1) - 3 "Be"^(- 3"x" + 1)`
and `("d"^2 "y")/"dx"^2 = 3 "Ae"^(3"x" + 1) * "d"/"dx" ("3x" + 1) - 3 "Be"^(- 3"x" + 1) * "d"/"dx" (- 3"x" + 1)`
`= 3"Ae"^(3"x" + 1) xx (3 xx 1 + 0) - 3"Be"^(- 3"x" + 1) xx (- 3 xx 1 + 0)`
`= 9"Ae"^(3"x" + 1) - 9"Be"^(- 3"x" + 1)`
`= 9 ("Ae"^(3"x" + 1) + "Be"^(- 3"x" + 1))`
= 9y ....[By (1)]
∴ `("d"^2"y")/"dx"^2 - 9"y" = 0`
This is the required D.E.
APPEARS IN
संबंधित प्रश्न
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = c1e2x + c2e5x
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
c1x3 + c2y2 = 5
In the following example verify that the given expression is a solution of the corresponding differential equation:
y = e-x + Ax + B; `"e"^"x" ("d"^2"y")/"dx"^2 = 1`
In the following example verify that the given expression is a solution of the corresponding differential equation:
y = xm; `"x"^2 ("d"^2"y")/"dx"^2 - "mx" "dy"/"dx" + "my" = 0`
Solve the following differential equation:
cos x . cos y dy − sin x . sin y dx = 0
Solve the following differential equation:
`(cos^2y)/x dy + (cos^2x)/y dx` = 0
Solve the following differential equation:
`"y"^3 - "dy"/"dx" = "x"^2 "dy"/"dx"`
For the following differential equation find the particular solution satisfying the given condition:
3ex tan y dx + (1 + ex) sec2 y dy = 0, when x = 0, y = π.
Reduce the following differential equation to the variable separable form and hence solve:
(2x - 2y + 3)dx - (x - y + 1)dy = 0, when x = 0, y = 1.
Solve the following differential equation:
(x2 + y2)dx - 2xy dy = 0
Choose the correct option from the given alternatives:
The differential equation of y = `"c"^2 + "c"/"x"` is
Choose the correct option from the given alternatives:
The solution of `("x + y")^2 "dy"/"dx" = 1` is
In the following example verify that the given function is a solution of the differential equation.
`"x"^2 + "y"^2 = "r"^2; "x" "dy"/"dx" + "r" sqrt(1 + ("dy"/"dx")^2) = "y"`
Form the differential equation of all parabolas which have 4b as latus rectum and whose axis is parallel to the Y-axis.
Find the particular solution of the following differential equation:
`"dy"/"dx" - 3"y" cot "x" = sin "2x"`, when `"y"(pi/2) = 2`
Select and write the correct alternative from the given option for the question
Solution of the equation `x ("d"y)/("d"x)` = y log y is
Select and write the correct alternative from the given option for the question
General solution of `y - x ("d"y)/("d"x)` = 0 is
Select and write the correct alternative from the given option for the question
The solution of `("d"y)/("d"x)` = 1 is
Find the differential equation of family of lines making equal intercepts on coordinate axes
Form the differential equation of y = (c1 + c2)ex
Find the differential equation of family of all ellipse whose major axis is twice the minor axis
The family of curves y = `e^("a" sin x)`, where a is an arbitrary constant, is represented by the differential equation.
Find the differential equation of the family of all non-vertical lines in a plane
Find the differential equation of the family of all non-horizontal lines in a plane
Form the differential equation of all straight lines touching the circle x2 + y2 = r2
Find the differential equation of the family of circles passing through the origin and having their centres on the x-axis
Find the differential equation of the family of all the parabolas with latus rectum 4a and whose axes are parallel to the x-axis
Find the differential equation of the family of parabolas with vertex at (0, –1) and having axis along the y-axis
Find the differential equations of the family of all the ellipses having foci on the y-axis and centre at the origin
Find the differential equation of the curve represented by xy = aex + be–x + x2
If `x^2 y^2 = sin^-1 sqrt(x^2 + y^2) + cos^-1 sqrt(x^2 + y^2)`, then `"dy"/"dx"` = ?
The elimination of the arbitrary constant m from the equation y = emx gives the differential equation ______.
The differential equation for all the straight lines which are at the distance of 2 units from the origin is ______.
The differential equation whose solution is (x – h)2 + (y – k)2 = a2 is (where a is a constant) ______.
For the curve C: (x2 + y2 – 3) + (x2 – y2 – 1)5 = 0, the value of 3y' – y3 y", at the point (α, α), α < 0, on C, is equal to ______.
Solve the differential equation
cos2(x – 2y) = `1 - 2dy/dx`
Find the particular solution of the differential equation `x^2 dy/dx + y^2 = xy dy/dx`, if y = 1 when x = 1.
A particle is moving along the X-axis. Its acceleration at time t is proportional to its velocity at that time. Find the differential equation of the motion of the particle.