हिंदी

Obtain the differential equation by eliminating the arbitrary constants from the following equation: c1x3 + c2y2 = 5 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Obtain the differential equation by eliminating the arbitrary constants from the following equation:

c1x3 + c2y2 = 5

योग

उत्तर

c1x3 + c2y2 = 5       .....(1)

Differentiating twice w.r.t. x, we get

`"c"_1 xx "3x"^2 + "c"_2 xx "2y" "dy"/"dx" = 0`

∴ `3"c"_1"x"^2 + 2"c"_2"y" "dy"/"dx" = 0` ....(2)

Differentiating again w.r.t. x, we get

`3"c"_1 xx "2x" + 2"c"_2 ["y"."d"/"dx"("dy"/"dx") + "dy"/"dx" * "dy"/"dx"] = 0`

∴ `6"c"_1"x" + 2"c"_2 ["y" ("d"^2"y")/"dx"^2 + ("dy"/"dx")^2] = 0`

The equations (1), (2) and (3) in c1, c2 are consistent.

∴ determinant of their consistency is zero.

∴ `|("x"^3, "y"^2, 5),("3x"^2, "2y""dy"/"dx", 0),(6"x", "2y" ("d"^2"y")/"dx"^2 + 2("dy"/"dx")^2, 0)|`

∴ `"x"^3 (0 - 0) - "y"^2(0 - 0) + 5["6x"^2"y" ("d"^2"y")/"dx"^2 + "6x"^2("dy"/"dx")^2 - 12"xy" "dy"/"dx"] = 0`

∴ `"6x"^2"y" ("d"^2"y")/"dx"^2 + "6x"^2("dy"/"dx")^2 - 12"xy" "dy"/"dx" = 0`

∴ `"xy" ("d"^2"y")/"dx"^2 + "x"("dy"/"dx")^2 - "2y" "dy"/"dx" = 0`

This is the required D.E.

shaalaa.com

Notes

The answer in the textbook is incorrect.

Formation of Differential Equations
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Differential Equations - Exercise 6.2 [पृष्ठ १९६]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 6 Differential Equations
Exercise 6.2 | Q 1.09 | पृष्ठ १९६

संबंधित प्रश्न

Obtain the differential equation by eliminating the arbitrary constants from the following equation:

Ax2 + By2 = 1


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = A cos (log x) + B sin (log x)


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = a + `"a"/"x"`


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = e−2x (A cos x + B sin x)


Form the differential equation of family of lines having intercepts a and b on the co-ordinate ares respectively.


Find the differential equation of the ellipse whose major axis is twice its minor axis.


Find the differential equation of all circles having radius 9 and centre at point (h, k).


Form the differential equation of all parabolas whose axis is the X-axis.


In the following example verify that the given expression is a solution of the corresponding differential equation:

y = `"e"^"ax"; "x" "dy"/"dx" = "y" log "y"`


Solve the following differential equation:

`log  ("dy"/"dx") = 2"x" + 3"y"`


Solve the following differential equation:

`"dy"/"dx" = - "k",` where k is a constant.


Solve the following differential equation:

`"y"^3 - "dy"/"dx" = "x"^2 "dy"/"dx"`


For the following differential equation find the particular solution satisfying the given condition:

`cos("dy"/"dx") = "a", "a" ∈ "R", "y"(0) = 2`


Reduce the following differential equation to the variable separable form and hence solve:

`cos^2 ("x - 2y") = 1 - 2 "dy"/"dx"`


Choose the correct option from the given alternatives:

The differential equation of y = `"c"^2 + "c"/"x"` is


Choose the correct option from the given alternatives:

The solution of `"dy"/"dx" = ("y" + sqrt("x"^2 - "y"^2))/"x"` is


Choose the correct option from the given alternatives:

The solution of `"dy"/"dx" + "y" = cos "x" - sin "x"`


The integrating factor of linear differential equation `x dy/dx + 2y = x^2 log x` is ______.


The particular solution of `dy/dx = xe^(y - x)`, when x = y = 0 is ______.


Choose the correct option from the given alternatives:

`"x"^2/"a"^2 - "y"^2/"b"^2 = 1` is a solution of


In the following example verify that the given function is a solution of the differential equation.

`"x"^2 + "y"^2 = "r"^2; "x" "dy"/"dx" + "r" sqrt(1 + ("dy"/"dx")^2) = "y"`


In the following example verify that the given function is a solution of the differential equation.

`"xy" = "ae"^"x" + "be"^-"x" + "x"^2; "x" ("d"^2"y")/"dx"^2 + 2 "dy"/"dx" + "x"^2 = "xy" + 2`


Form the differential equation of the hyperbola whose length of transverse and conjugate axes are half of that of the given hyperbola `"x"^2/16 - "y"^2/36 = "k"`.


Solve the following differential equation:

x dy = (x + y + 1) dx


Find the particular solution of the following differential equation:

y(1 + log x) = (log xx) `"dy"/"dx"`, when y(e) = e2


Select and write the correct alternative from the given option for the question

The solution of `("d"y)/("d"x)` = 1 is


Select and write the correct alternative from the given option for the question 

The solutiion of `("d"y)/("d"x) + x^2/y^2` = 0 is


Find the differential equation of family of lines making equal intercepts on coordinate axes


Find the differential equation of the family of all non-horizontal lines in a plane 


Find the differential equation of the family of parabolas with vertex at (0, –1) and having axis along the y-axis


Find the differential equation corresponding to the family of curves represented by the equation y = Ae8x + Be 8x, where A and B are arbitrary constants


Choose the correct alternative:

The slope at any point of a curve y = f(x) is given by `("d"y)/("d"x) - 3x^2` and it passes through (-1, 1). Then the equation of the curve is


The differential equation of all lines perpendicular to the line 5x + 2y + 7 = 0 is ____________.


The differential equation of the family of circles touching Y-axis at the origin is ______.


The differential equation of all circles passing through the origin and having their centres on the X-axis is ______.


Solve the differential equation

cos2(x – 2y) = `1 - 2dy/dx`


If 2x = `y^(1/m) + y^(-1/m)`, then show that `(x^2 - 1) (dy/dx)^2` = m2y2


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×