हिंदी

Form the differential equation of all parabolas whose axis is the X-axis. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Form the differential equation of all parabolas whose axis is the X-axis.

योग

उत्तर

The equation of the parbola whose axis is the X-axis is y2 = 4a(x - h),     ....(1)

where a and h are arbitrary constants.

Differentiating (1) w.r.t. x, we get

`"2y"("dy"/"dx") = 4"a"(1 - 0)`

∴ y`"dy"/"dx" = "2a"`

Differentiating again w.r.t. x, we get

`"y" * "d"/"dx"("dy"/"dx") + "dy"/"dx" * "dy"/"dx" = 0`

∴ `"y"("d"^2"y")/"dx"^2 + ("dy"/"dx")^2 = 0`

This is the required D.E.

shaalaa.com
Formation of Differential Equations
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Differential Equations - Exercise 6.2 [पृष्ठ १९६]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 6 Differential Equations
Exercise 6.2 | Q 7 | पृष्ठ १९६

संबंधित प्रश्न

Obtain the differential equation by eliminating the arbitrary constants from the following equation:

(y - a)2 = 4(x - b)


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = c1e2x + c2e5x 


Form the differential equation of family of lines having intercepts a and b on the co-ordinate ares respectively.


Find the differential equation of the ellipse whose major axis is twice its minor axis.


In the following example verify that the given expression is a solution of the corresponding differential equation:

y = `(sin^-1 "x")^2 + "c"; (1 - "x"^2) ("d"^2"y")/"dx"^2 - "x" "dy"/"dx" = 2`


Solve the following differential equation:

`"y" - "x" "dy"/"dx" = 0`


Solve the following differential equation:

`"dy"/"dx" = - "k",` where k is a constant.


Solve the following differential equation:

`(cos^2y)/x dy + (cos^2x)/y dx` = 0


For the following differential equation find the particular solution satisfying the given condition:

3ex tan y dx + (1 + ex) sec2 y dy = 0, when x = 0, y = π.


Reduce the following differential equation to the variable separable form and hence solve:

`("x - y")^2 "dy"/"dx" = "a"^2`


Reduce the following differential equation to the variable separable form and hence solve:

(2x - 2y + 3)dx - (x - y + 1)dy = 0, when x = 0, y = 1.


Choose the correct option from the given alternatives:

x2 + y2 = a2 is a solution of


Choose the correct option from the given alternatives:

The solution of `("x + y")^2 "dy"/"dx" = 1` is


The integrating factor of linear differential equation `x dy/dx + 2y = x^2 log x` is ______.


In the following example verify that the given function is a solution of the differential equation.

`"y" = "e"^"ax" sin "bx"; ("d"^2"y")/"dx"^2 - 2"a" "dy"/"dx" + ("a"^2 + "b"^2)"y" = 0`


In the following example verify that the given function is a solution of the differential equation.

`"xy" = "ae"^"x" + "be"^-"x" + "x"^2; "x" ("d"^2"y")/"dx"^2 + 2 "dy"/"dx" + "x"^2 = "xy" + 2`


In the following example verify that the given function is a solution of the differential equation.

`"x"^2 = "2y"^2 log "y",  "x"^2 + "y"^2 = "xy" "dx"/"dy"`


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

(y - a)2 = b(x + 4)


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = `"Ae"^(3"x" + 1) + "Be"^(- 3"x" + 1)`


Form the differential equation of all the lines which are normal to the line 3x + 2y + 7 = 0.


Form the differential equation of the hyperbola whose length of transverse and conjugate axes are half of that of the given hyperbola `"x"^2/16 - "y"^2/36 = "k"`.


Solve the following differential equation:

`"dy"/"dx" = ("2y" - "x")/("2y + x")`


Solve the following differential equation:

y log y = (log y2 - x) `"dy"/"dx"`


Find the particular solution of the following differential equation:

`"dy"/"dx" - 3"y" cot "x" = sin "2x"`, when `"y"(pi/2) = 2`


Select and write the correct alternative from the given option for the question

General solution of `y - x ("d"y)/("d"x)` = 0 is


Form the differential equation of y = (c1 + c2)ex 


Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0


Find the differential equation of the family of circles passing through the origin and having their centres on the x-axis


Find the differential equation of the curve represented by xy = aex + be–x + x2


If `x^2 y^2 = sin^-1 sqrt(x^2 + y^2) + cos^-1 sqrt(x^2 + y^2)`, then `"dy"/"dx"` = ?


The differential equation of all lines perpendicular to the line 5x + 2y + 7 = 0 is ____________.


If m and n are respectively the order and degree of the differential equation of the family of parabolas with focus at the origin and X-axis as its axis, then mn - m + n = ______.


The differential equation of all parabolas whose axis is Y-axis, is ______.


The differential equation of the family of circles touching Y-axis at the origin is ______.


Form the differential equation whose general solution is y = a cos 2x + b sin 2x.


A particle is moving along the X-axis. Its acceleration at time t is proportional to its velocity at that time. Find the differential equation of the motion of the particle.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×