हिंदी

Solve the following differential equation: dydx2yx2y + xdydx=2y-x2y + x - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve the following differential equation:

`"dy"/"dx" = ("2y" - "x")/("2y + x")`

योग

उत्तर

`"dy"/"dx" = ("2y" - "x")/("2y + x")`      ....(1)

Put y = vx      ∴ `"dy"/"dx" = "v + x""dv"/"dx"`

∴ (1) becomes, `"v + x""dv"/"dx" = ("2vx - x")/("2vx + x")`

∴ `"v + x""dv"/"dx" = ("2v" - 1)/("2v" + 1)`

∴ `"x""dv"/"dx" = ("2v" - 1)/("2v" + 1) - "v" = ("2v" - 1 - "2v"^2 - "v")/("2v + 1")`

∴ `"x""dv"/"dx" = - (("2v"^2 - "v" + 1)/("2v" + 1))`

∴ `("2v" + 1)/("2v"^2 - "v" + 1) "dv" = - 1/"x" "dx"`

Integrating both sides, we get

`int ("2v" + 1)/("2v"^2 - "v" + 1) "dv" = - int 1/"x" "dx"`

∴ `int (1/2 ("4v" - 1) + 3/2)/("2v"^2 - "v" + 1) "dv" = - int 1/"x" "dx"`

∴ `1/2 int ("4v" - 1)/("2v"^2 - "v" + 1) "dv" + 3/2 int 1/("2v"^2 - "v" + 1) "dv" = - int 1/"x"`

∴ `1/2 int ("4v" - 1)/("2v"^2 - "v" + 1) "dv" + 3/4 int 1/("v"^2 - 1/2"v" + 1/2)"dv" = - int 1/"x" "dx"`

∴ `1/2 int ("4v" - 1)/("2v"^2 - "v" + 1) "dv" + 3/4 int 1/(("v"^2 - 1/2"v" + 1/16) + 7/16) "dv" = - int 1/"x" "dx"`

∴ `1/2 int ("4v" - 1)/("2v"^2 - "v" + 1) "dv" + 3/4int 1/(("v" - 1/4)^2 + (sqrt7/4)^2)"dv" = - int 1/"x" "dx"`

∴ `1/2 log |2"v"^2 - "v" + 1| + 3/4 xx 1/((sqrt7/4)) tan^-1 |("v" - 1/4)/((sqrt7/4))| = - log |x| + "c"_1 .....[because "d"/"dv" (2"v"^2 - "v" + 1) = 4"v" - 1 and int ("f"'("v"))/("f"("v")) "dv" = log |"f"("v")| + c]`

∴ `1/2 log |2 ("y"^2/"x"^2) - "y"/"x" + 1| + 3/sqrt7 tan^-1 ((4("y"/"x") - 1)/sqrt7) = - log |"x"| + "c"_1` 

∴ `1/2 log |(2"y"^2 - "xy" + "x"^2)/"x"^2| + 3/sqrt7 tan^-1 ((4"y - x")/(sqrt7"x")) = - log |"x"| + "c"_1`

∴ `log |("x"^2 - "xy" + "2y"^2)/"x"^2| + 6/sqrt7 tan^-1 (("4y - x")/(sqrt7"x")) = - 2 log |"x"| + 2"c"_1`

∴ `log |"x"^2 - "xy" + "2y"^2| - log"x"^2 + 6/sqrt7 tan^-1 (("4y - x")/(sqrt7"x")) = - log "x"^2 + "c"_1  "where"  "c" = 2"c"_1`

∴ `log |"x"^2 - "xy" + "2y"^2| + 6/sqrt7 tan^-1 (("4y - x")/(sqrt7"x")) = "c"`

This is the general solution.

shaalaa.com

Notes

The answer in the textbook is incorrect.

Formation of Differential Equations
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Differential Equations - Miscellaneous exercise 2 [पृष्ठ २१७]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 6 Differential Equations
Miscellaneous exercise 2 | Q 5.3 | पृष्ठ २१७

संबंधित प्रश्न

Obtain the differential equation by eliminating the arbitrary constants from the following equation:

Ax2 + By2 = 1


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

(y - a)2 = 4(x - b)


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = c1e2x + c2e5x 


Form the differential equation of family of lines having intercepts a and b on the co-ordinate ares respectively.


Find the differential equation of the ellipse whose major axis is twice its minor axis.


Form the differential equation of family of lines parallel to the line 2x + 3y + 4 = 0.


Solve the following differential equation:

`"dy"/"dx" = (1 + "y")^2/(1 + "x")^2`


Solve the following differential equation:

`log  ("dy"/"dx") = 2"x" + 3"y"`


Solve the following differential equation:

`"dy"/"dx" = - "k",` where k is a constant.


Solve the following differential equation:

`"dy"/"dx" = "e"^("x + y") + "x"^2 "e"^"y"`


For the following differential equation find the particular solution satisfying the given condition:

`y(1 + log x) dx/dy - x log x = 0, y = e^2,` when x = e


For the following differential equation find the particular solution satisfying the given condition:

`("x" + 1) "dy"/"dx" - 1 = 2"e"^-"y" , "y" = 0`, when x = 1


Reduce the following differential equation to the variable separable form and hence solve:

`"dy"/"dx" = cos("x + y")`


Reduce the following differential equation to the variable separable form and hence solve:

`("x - y")^2 "dy"/"dx" = "a"^2`


Reduce the following differential equation to the variable separable form and hence solve:

`"x + y""dy"/"dx" = sec("x"^2 + "y"^2)`


Choose the correct option from the given alternatives:

The differential equation of all circles having their centres on the line y = 5 and touching the X-axis is


In the following example verify that the given function is a solution of the differential equation.

`"y" = "e"^"ax" sin "bx"; ("d"^2"y")/"dx"^2 - 2"a" "dy"/"dx" + ("a"^2 + "b"^2)"y" = 0`


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = `sqrt("a" cos (log "x") + "b" sin (log "x"))`


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = `"Ae"^(3"x" + 1) + "Be"^(- 3"x" + 1)`


Form the differential equation of all parabolas which have 4b as latus rectum and whose axis is parallel to the Y-axis.


Form the differential equation of all the lines which are normal to the line 3x + 2y + 7 = 0.


Solve the following differential equation:

`"dy"/"dx" + "y cot x" = "x"^2 "cot x" + "2x"`


Solve the following differential equation:

y log y = (log y2 - x) `"dy"/"dx"`


Find the particular solution of the following differential equation:

`("x + 2y"^2) "dy"/"dx" = "y",` when x = 2, y = 1


Select and write the correct alternative from the given option for the question

Solution of the equation `x  ("d"y)/("d"x)` = y log y is


The general solution of `(dy)/(dx)` = e−x is ______.


Find the differential equation of family of lines making equal intercepts on coordinate axes


Find the differential equation of the family of all non-horizontal lines in a plane 


Form the differential equation of all straight lines touching the circle x2 + y2 = r2


Find the differential equation of the family of all the parabolas with latus rectum 4a and whose axes are parallel to the x-axis


Choose the correct alternative:

The slope at any point of a curve y = f(x) is given by `("d"y)/("d"x) - 3x^2` and it passes through (-1, 1). Then the equation of the curve is


The differential equation representing the family of ellipse having foci either on the x-axis or on the y-axis centre at the origin and passing through the point (0, 3) is ______.


The differential equation of all circles passing through the origin and having their centres on the X-axis is ______.


The differential equation for a2y = log x + b, is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×