Advertisements
Advertisements
प्रश्न
Solve the following differential equation:
`"dy"/"dx" = ("2y" - "x")/("2y + x")`
उत्तर
`"dy"/"dx" = ("2y" - "x")/("2y + x")` ....(1)
Put y = vx ∴ `"dy"/"dx" = "v + x""dv"/"dx"`
∴ (1) becomes, `"v + x""dv"/"dx" = ("2vx - x")/("2vx + x")`
∴ `"v + x""dv"/"dx" = ("2v" - 1)/("2v" + 1)`
∴ `"x""dv"/"dx" = ("2v" - 1)/("2v" + 1) - "v" = ("2v" - 1 - "2v"^2 - "v")/("2v + 1")`
∴ `"x""dv"/"dx" = - (("2v"^2 - "v" + 1)/("2v" + 1))`
∴ `("2v" + 1)/("2v"^2 - "v" + 1) "dv" = - 1/"x" "dx"`
Integrating both sides, we get
`int ("2v" + 1)/("2v"^2 - "v" + 1) "dv" = - int 1/"x" "dx"`
∴ `int (1/2 ("4v" - 1) + 3/2)/("2v"^2 - "v" + 1) "dv" = - int 1/"x" "dx"`
∴ `1/2 int ("4v" - 1)/("2v"^2 - "v" + 1) "dv" + 3/2 int 1/("2v"^2 - "v" + 1) "dv" = - int 1/"x"`
∴ `1/2 int ("4v" - 1)/("2v"^2 - "v" + 1) "dv" + 3/4 int 1/("v"^2 - 1/2"v" + 1/2)"dv" = - int 1/"x" "dx"`
∴ `1/2 int ("4v" - 1)/("2v"^2 - "v" + 1) "dv" + 3/4 int 1/(("v"^2 - 1/2"v" + 1/16) + 7/16) "dv" = - int 1/"x" "dx"`
∴ `1/2 int ("4v" - 1)/("2v"^2 - "v" + 1) "dv" + 3/4int 1/(("v" - 1/4)^2 + (sqrt7/4)^2)"dv" = - int 1/"x" "dx"`
∴ `1/2 log |2"v"^2 - "v" + 1| + 3/4 xx 1/((sqrt7/4)) tan^-1 |("v" - 1/4)/((sqrt7/4))| = - log |x| + "c"_1 .....[because "d"/"dv" (2"v"^2 - "v" + 1) = 4"v" - 1 and int ("f"'("v"))/("f"("v")) "dv" = log |"f"("v")| + c]`
∴ `1/2 log |2 ("y"^2/"x"^2) - "y"/"x" + 1| + 3/sqrt7 tan^-1 ((4("y"/"x") - 1)/sqrt7) = - log |"x"| + "c"_1`
∴ `1/2 log |(2"y"^2 - "xy" + "x"^2)/"x"^2| + 3/sqrt7 tan^-1 ((4"y - x")/(sqrt7"x")) = - log |"x"| + "c"_1`
∴ `log |("x"^2 - "xy" + "2y"^2)/"x"^2| + 6/sqrt7 tan^-1 (("4y - x")/(sqrt7"x")) = - 2 log |"x"| + 2"c"_1`
∴ `log |"x"^2 - "xy" + "2y"^2| - log"x"^2 + 6/sqrt7 tan^-1 (("4y - x")/(sqrt7"x")) = - log "x"^2 + "c"_1 "where" "c" = 2"c"_1`
∴ `log |"x"^2 - "xy" + "2y"^2| + 6/sqrt7 tan^-1 (("4y - x")/(sqrt7"x")) = "c"`
This is the general solution.
Notes
The answer in the textbook is incorrect.
APPEARS IN
संबंधित प्रश्न
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
Ax2 + By2 = 1
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
(y - a)2 = 4(x - b)
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = c1e2x + c2e5x
Find the differential equation of the ellipse whose major axis is twice its minor axis.
Form the differential equation of family of lines parallel to the line 2x + 3y + 4 = 0.
Solve the following differential equation:
`"dy"/"dx" = (1 + "y")^2/(1 + "x")^2`
Solve the following differential equation:
`log ("dy"/"dx") = 2"x" + 3"y"`
Solve the following differential equation:
`"dy"/"dx" = - "k",` where k is a constant.
Solve the following differential equation:
`"dy"/"dx" = "e"^("x + y") + "x"^2 "e"^"y"`
For the following differential equation find the particular solution satisfying the given condition:
`y(1 + log x) dx/dy - x log x = 0, y = e^2,` when x = e
For the following differential equation find the particular solution satisfying the given condition:
`("x" + 1) "dy"/"dx" - 1 = 2"e"^-"y" , "y" = 0`, when x = 1
Reduce the following differential equation to the variable separable form and hence solve:
`"dy"/"dx" = cos("x + y")`
Reduce the following differential equation to the variable separable form and hence solve:
`("x - y")^2 "dy"/"dx" = "a"^2`
Reduce the following differential equation to the variable separable form and hence solve:
`"x + y""dy"/"dx" = sec("x"^2 + "y"^2)`
Choose the correct option from the given alternatives:
The differential equation of all circles having their centres on the line y = 5 and touching the X-axis is
In the following example verify that the given function is a solution of the differential equation.
`"y" = "e"^"ax" sin "bx"; ("d"^2"y")/"dx"^2 - 2"a" "dy"/"dx" + ("a"^2 + "b"^2)"y" = 0`
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = `sqrt("a" cos (log "x") + "b" sin (log "x"))`
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = `"Ae"^(3"x" + 1) + "Be"^(- 3"x" + 1)`
Form the differential equation of all parabolas which have 4b as latus rectum and whose axis is parallel to the Y-axis.
Form the differential equation of all the lines which are normal to the line 3x + 2y + 7 = 0.
Solve the following differential equation:
`"dy"/"dx" + "y cot x" = "x"^2 "cot x" + "2x"`
Solve the following differential equation:
y log y = (log y2 - x) `"dy"/"dx"`
Find the particular solution of the following differential equation:
`("x + 2y"^2) "dy"/"dx" = "y",` when x = 2, y = 1
Select and write the correct alternative from the given option for the question
Solution of the equation `x ("d"y)/("d"x)` = y log y is
The general solution of `(dy)/(dx)` = e−x is ______.
Find the differential equation of family of lines making equal intercepts on coordinate axes
Find the differential equation of the family of all non-horizontal lines in a plane
Form the differential equation of all straight lines touching the circle x2 + y2 = r2
Find the differential equation of the family of all the parabolas with latus rectum 4a and whose axes are parallel to the x-axis
Choose the correct alternative:
The slope at any point of a curve y = f(x) is given by `("d"y)/("d"x) - 3x^2` and it passes through (-1, 1). Then the equation of the curve is
The differential equation representing the family of ellipse having foci either on the x-axis or on the y-axis centre at the origin and passing through the point (0, 3) is ______.
The differential equation of all circles passing through the origin and having their centres on the X-axis is ______.
The differential equation for a2y = log x + b, is ______.