हिंदी

In the following example verify that the given function is a solution of the differential equation. yeaxbxdydxadydxabyy=eaxsinbx;d2ydx2-2adydx+(a2+b2)y=0 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

In the following example verify that the given function is a solution of the differential equation.

`"y" = "e"^"ax" sin "bx"; ("d"^2"y")/"dx"^2 - 2"a" "dy"/"dx" + ("a"^2 + "b"^2)"y" = 0`

योग

उत्तर

`"y" = "e"^"ax" sin "bx"`

∴ `"dy"/"dx" = "d"/"dx"("e"^"ax" sin "bx")`

`= "e"^"ax" * "d"/"dx" (sin "bx") + sin "bx" * "d"/"dx" ("e"^"ax")`

`= "e"^"ax" xx cos "bx" * "d"/"dx" ("bx") + sin "bx" * "e"^"ax" * "d"/"dx" ("ax")`

`= "e"^"ax" cos "bx" xx "b" + "e"^"ax" sin "bx" xx "a"`

`= "e"^"ax" ("b" cos "bx" + "a" sin "bx")`

and `("d"^2"y")/"dx"^2 = "d"/"dx"["e"^"ax" ("b" cos "bx" + "a" sin "bx")]`

`= "e"^"ax" * "d"/"dx" ("b" cos "bx" + "a" sin "bx") + ("b" cos "bx" + "a" sin "bx")*"d"/"dx"("e"^"ax")`

`= "e"^"ax" ["b" (- sin "bx") * "d"/"dx" ("bx") + "a" cos "bx" * "d"/"dx"("bx")] + ("b" cos "bx" + "a" sin "bx") * "e"^"ax" * "d"/"dx" ("ax")`

`= "e"^"ax" [- "b" sin "bx" xx "b" + "a" cos "bx" xx "b"] + ("b" cos "bx" + "a" sin bx) * "e"^"ax" xx "a"`

`= "e"^"ax" (- "b"^2 sin "bx" + "ab" cos "bx" +"ab" cos "bx" + "a"^2 sin "bx")`

`= "e"^"ax" [("a"^2 - "b"^2) sin "bx" + 2"ab" cos "bx"]`

∴ `("d"^2"y")/"dx"^2 - 2"a" "dy"/"dx" + ("a"^2 + "b"^2)"y"`

`= "e"^"ax" [("a"^2 - "b"^2)] sin "bx" + 2"ab" cos "bx" - 2"a" * "e"^"ax" ("b" cos "bx" + "a" sin "bx") + ("a"^2 + "b"^2) * "e"^"ax" sin "bx"`

`= "e"^"ax" [("a"^2 - "b"^2) sin "bx" + 2"ab" cos "bx" - 2"ab" cos "bx" - 2"a"^2 sin "bx" + ("a"^2 + "b"^2) sin "bx"]`

`= "e"^"ax" [("a"^2 - "b"^2) sin "bx" - ("a"^2 - "b"^2) sin "bx"]`

`= "e"^"ax" xx 0 = 0`

Hence. y = `"e"^"ax"` sin bx is a solution of the D.E.

`("d"^2"y")/"dx"^2 - 2"a" "dy"/"dx" + ("a"^2 + "b"^2)"y" = 0`

shaalaa.com
Formation of Differential Equations
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Differential Equations - Miscellaneous exercise 2 [पृष्ठ २१७]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 6 Differential Equations
Miscellaneous exercise 2 | Q 2.2 | पृष्ठ २१७

संबंधित प्रश्न

Obtain the differential equation by eliminating the arbitrary constants from the following equation:

x3 + y3 = 4ax


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

Ax2 + By2 = 1


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = Ae5x + Be-5x 


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = a + `"a"/"x"`


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

c1x3 + c2y2 = 5


Find the differential equation of the ellipse whose major axis is twice its minor axis.


Form the differential equation of all parabolas whose axis is the X-axis.


In the following example verify that the given expression is a solution of the corresponding differential equation:

xy = log y +c; `"dy"/"dx" = "y"^2/(1 - "xy")`


Solve the following differential equation:

`"sec"^2 "x" * "tan y"  "dx" + "sec"^2 "y" * "tan x"  "dy" = 0` 


Solve the following differential equation:

`(cos^2y)/x dy + (cos^2x)/y dx` = 0


For the following differential equation find the particular solution satisfying the given condition:

`y(1 + log x) dx/dy - x log x = 0, y = e^2,` when x = e


For the following differential equation find the particular solution satisfying the given condition:

`(e^y + 1) cos x + e^y sin x. dy/dx = 0,  "when" x = pi/6,` y = 0


Reduce the following differential equation to the variable separable form and hence solve:

`"dy"/"dx" = cos("x + y")`


Reduce the following differential equation to the variable separable form and hence solve:

`"x + y""dy"/"dx" = sec("x"^2 + "y"^2)`


Choose the correct option from the given alternatives:

The differential equation of all circles having their centres on the line y = 5 and touching the X-axis is


Choose the correct option from the given alternatives:

The solution of `"dy"/"dx" + "y" = cos "x" - sin "x"`


In the following example verify that the given function is a solution of the differential equation.

`"x"^2 = "2y"^2 log "y",  "x"^2 + "y"^2 = "xy" "dx"/"dy"`


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

(y - a)2 = b(x + 4)


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = `sqrt("a" cos (log "x") + "b" sin (log "x"))`


Form the differential equation of all the lines which are normal to the line 3x + 2y + 7 = 0.


Solve the following differential equation:

`"dy"/"dx" = ("2y" - "x")/("2y + x")`


The general solution of `(dy)/(dx)` = e−x is ______.


Find the differential equation of family of lines making equal intercepts on coordinate axes


Form the differential equation of y = (c1 + c2)ex 


Find the differential equation by eliminating arbitrary constants from the relation x2 + y2 = 2ax


Find the differential equation from the relation x2 + 4y2 = 4b2 


The differential equation having y = (cos-1 x)2 + P (sin-1 x) + Q as its general solution, where P and Q are arbitrary constants, is 


Find the differential equation of the family of circles passing through the origin and having their centres on the x-axis


Find the differential equations of the family of all the ellipses having foci on the y-axis and centre at the origin


The differential equation of all lines perpendicular to the line 5x + 2y + 7 = 0 is ____________.


The elimination of the arbitrary constant m from the equation y = emx gives the differential equation ______.


The differential equation for all the straight lines which are at the distance of 2 units from the origin is ______.


For the curve C: (x2 + y2 – 3) + (x2 – y2 – 1)5 = 0, the value of 3y' – y3 y", at the point (α, α), α < 0, on C, is equal to ______.


The differential equation of all parabolas whose axis is Y-axis, is ______.


Find the particular solution of the differential equation `x^2 dy/dx + y^2 = xy dy/dx`, if y = 1 when x = 1.


A particle is moving along the X-axis. Its acceleration at time t is proportional to its velocity at that time. Find the differential equation of the motion of the particle.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×