हिंदी

For the following differential equation find the particular solution satisfying the given condition: eyxeyxdydxwhenx(ey+1)cosx+eysinxdydx=0, whenx=π6, y = 0 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

For the following differential equation find the particular solution satisfying the given condition:

`(e^y + 1) cos x + e^y sin x. dy/dx = 0,  "when" x = pi/6,` y = 0

योग

उत्तर

`(e^y + 1) cos x + e^y sin x dy/dx = 0`

`e^y.sinx.dy/dx = - (e^y + 1) cosx`

`inte^y/(e^y + 1).dy = - intcosx/sinx. dx`

`log |e^y + 1| = - log |sinx| + log |c|`

`log |e^y + 1| + log |sinx| = log|c|`

`log|(e^y + 1) . sinx| = log |c|`

`(e^y + 1). sinx = c` ...(i)

when `x = pi/6, y = 0`

`(e^0 + 1). sin(pi/6) = 0`

`(1 + 1) . 1/2 = c`

`2 xx 1/2 = c`

c = 1

From (i)

∴ the particular solution is (ey + 1). sinx = 1

shaalaa.com
Formation of Differential Equations
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Differential Equations - Exercise 6.3 [पृष्ठ २०१]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 6 Differential Equations
Exercise 6.3 | Q 3.4 | पृष्ठ २०१

संबंधित प्रश्न

Obtain the differential equation by eliminating the arbitrary constants from the following equation:

Ax2 + By2 = 1


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = Ae5x + Be-5x 


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

(y - a)2 = 4(x - b)


Find the differential equation of all circles having radius 9 and centre at point (h, k).


Form the differential equation of all parabolas whose axis is the X-axis.


In the following example verify that the given expression is a solution of the corresponding differential equation:

y = e-x + Ax + B; `"e"^"x" ("d"^2"y")/"dx"^2 = 1`


In the following example verify that the given expression is a solution of the corresponding differential equation:

y = `"a" + "b"/"x"; "x" ("d"^2"y")/"dx"^2 + 2 "dy"/"dx" = 0`


Solve the following differential equation:

`"y" - "x" "dy"/"dx" = 0`


Reduce the following differential equation to the variable separable form and hence solve:

`"x + y""dy"/"dx" = sec("x"^2 + "y"^2)`


Reduce the following differential equation to the variable separable form and hence solve:

(2x - 2y + 3)dx - (x - y + 1)dy = 0, when x = 0, y = 1.


Solve the following differential equation:

(x2 + y2)dx - 2xy dy = 0


Choose the correct option from the given alternatives:

x2 + y2 = a2 is a solution of


Choose the correct option from the given alternatives:

The solution of `"dy"/"dx" = ("y" + sqrt("x"^2 - "y"^2))/"x"` is


The particular solution of `dy/dx = xe^(y - x)`, when x = y = 0 is ______.


Form the differential equation of the hyperbola whose length of transverse and conjugate axes are half of that of the given hyperbola `"x"^2/16 - "y"^2/36 = "k"`.


Solve the following differential equation:

`"dy"/"dx" = "x"^2"y" + "y"`


Solve the following differential equation:

`"dy"/"dx" = ("2y" - "x")/("2y + x")`


Solve the following differential equation:

x dy = (x + y + 1) dx


Solve the following differential equation:

`"dy"/"dx" + "y cot x" = "x"^2 "cot x" + "2x"`


Solve the following differential equation:

y log y = (log y2 - x) `"dy"/"dx"`


Find the particular solution of the following differential equation:

(x + y)dy + (x - y)dx = 0; when x = 1 = y


Find the general solution of `("d"y)/("d"x) = (1 + y^2)/(1 + x^2)`


Form the differential equation of y = (c1 + c2)ex 


Find the differential equation of family of all ellipse whose major axis is twice the minor axis


Find the differential equation from the relation x2 + 4y2 = 4b2 


Find the differential equation of the family of all non-vertical lines in a plane


Find the differential equation of the family of all non-horizontal lines in a plane 


Find the differential equation of the family of all the parabolas with latus rectum 4a and whose axes are parallel to the x-axis


Find the differential equation of the family of parabolas with vertex at (0, –1) and having axis along the y-axis


The rate of disintegration of a radio active element at time t is proportional to its mass, at the time. Then the time during which the original mass of 1.5 gm. Will disintegrate into its mass of 0.5 gm. is proportional to ______.


If `x^2 y^2 = sin^-1 sqrt(x^2 + y^2) + cos^-1 sqrt(x^2 + y^2)`, then `"dy"/"dx"` = ?


If m and n are respectively the order and degree of the differential equation of the family of parabolas with focus at the origin and X-axis as its axis, then mn - m + n = ______.


The differential equation for all the straight lines which are at the distance of 2 units from the origin is ______.


The differential equation of all circles passing through the origin and having their centres on the X-axis is ______.


The differential equation for a2y = log x + b, is ______.


Solve the differential equation

cos2(x – 2y) = `1 - 2dy/dx`


If 2x = `y^(1/m) + y^(-1/m)`, then show that `(x^2 - 1) (dy/dx)^2` = m2y2


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×