Advertisements
Advertisements
प्रश्न
Solve the following differential equation:
y log y = (log y2 - x) `"dy"/"dx"`
उत्तर
y log y = (log y2 - x) `"dy"/"dx"`
∴ `1/("dy"/"dx") = (log "y"^2 - "x")/("y" log "y")`
∴ `"dx"/"dy" = (2 log "y - x")/("y" log "y")`
∴ `"dx"/"dy" = 2/"y" - "x"/("y" log "y")`
∴ `"dx"/"dy" + "x"/("y" log "y") = 2/"y"` .....(1)
This is the linear differential equation of the form
`"dx"/"dy" + "Px" = "Q"` where P = `1/("y" log "y") and "Q" = 2/"y"`
∴ I.F. = `"e"^(int "P dy") = "e"^(int 1/("y" log "y")"dy")`
`= "e"^(int (1//"y")/(log "y")"dy") = "e"^(log |log "y"|)` = log y
∴ the solution of (1) is given by
`"x" * ("I.F.") = int "Q" * ("I.F.") "dy" + "c"`
∴ `"x" * log "y" = int 2/"y" * log "y" "dy" + "c"`
∴ `(log "y") * "x" = 2 int (log "y")/"y" "dy" + "c"`
Put log y = t
∴ `1/"y" "dy" = "dt"`
∴ `("log y")*"x" = 2 int "t" "dt" + "c"`
∴ x log y = `2 * "t"^2/2 + "c"`
∴ x log y = (log y)2 + c
This is the general solution.
APPEARS IN
संबंधित प्रश्न
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
x3 + y3 = 4ax
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
Ax2 + By2 = 1
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
(y - a)2 = 4(x - b)
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
c1x3 + c2y2 = 5
Find the differential equation of all circles having radius 9 and centre at point (h, k).
In the following example verify that the given expression is a solution of the corresponding differential equation:
xy = log y +c; `"dy"/"dx" = "y"^2/(1 - "xy")`
In the following example verify that the given expression is a solution of the corresponding differential equation:
y = `"e"^"ax"; "x" "dy"/"dx" = "y" log "y"`
Solve the following differential equation:
`"sec"^2 "x" * "tan y" "dx" + "sec"^2 "y" * "tan x" "dy" = 0`
For the following differential equation find the particular solution satisfying the given condition:
`y(1 + log x) dx/dy - x log x = 0, y = e^2,` when x = e
For the following differential equation find the particular solution satisfying the given condition:
`cos("dy"/"dx") = "a", "a" ∈ "R", "y"(0) = 2`
Choose the correct option from the given alternatives:
The solution of `"dy"/"dx" = ("y" + sqrt("x"^2 - "y"^2))/"x"` is
In the following example verify that the given function is a solution of the differential equation.
`"x"^2 + "y"^2 = "r"^2; "x" "dy"/"dx" + "r" sqrt(1 + ("dy"/"dx")^2) = "y"`
In the following example verify that the given function is a solution of the differential equation.
`"y" = 3 "cos" (log "x") + 4 sin (log "x"); "x"^2 ("d"^2"y")/"dx"^2 + "x" "dy"/"dx" + "y" = 0`
In the following example verify that the given function is a solution of the differential equation.
`"x"^2 = "2y"^2 log "y", "x"^2 + "y"^2 = "xy" "dx"/"dy"`
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
(y - a)2 = b(x + 4)
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = `"Ae"^(3"x" + 1) + "Be"^(- 3"x" + 1)`
Form the differential equation of all the lines which are normal to the line 3x + 2y + 7 = 0.
Form the differential equation of the hyperbola whose length of transverse and conjugate axes are half of that of the given hyperbola `"x"^2/16 - "y"^2/36 = "k"`.
Solve the following differential equation:
`"dy"/"dx" = ("2y" - "x")/("2y + x")`
Solve the following differential equation:
x dy = (x + y + 1) dx
Solve the following differential equation:
`"dy"/"dx" + "y cot x" = "x"^2 "cot x" + "2x"`
Find the particular solution of the following differential equation:
y(1 + log x) = (log xx) `"dy"/"dx"`, when y(e) = e2
Select and write the correct alternative from the given option for the question
Solution of the equation `x ("d"y)/("d"x)` = y log y is
Find the differential equation from the relation x2 + 4y2 = 4b2
Find the differential equation of the family of all non-vertical lines in a plane
Choose the correct alternative:
The slope at any point of a curve y = f(x) is given by `("d"y)/("d"x) - 3x^2` and it passes through (-1, 1). Then the equation of the curve is
The rate of disintegration of a radio active element at time t is proportional to its mass, at the time. Then the time during which the original mass of 1.5 gm. Will disintegrate into its mass of 0.5 gm. is proportional to ______.
The elimination of the arbitrary constant m from the equation y = emx gives the differential equation ______.
Form the differential equation of all lines which makes intercept 3 on x-axis.
The differential equation whose solution is (x – h)2 + (y – k)2 = a2 is (where a is a constant) ______.
If y = (tan–1 x)2 then `(x^2 + 1)^2 (d^2y)/(dx^2) + 2x(x^2 + 1) (dy)/(dx)` = ______.
The differential equation of all parabolas having vertex at the origin and axis along positive Y-axis is ______.
The differential equation for a2y = log x + b, is ______.
Solve the differential equation
cos2(x – 2y) = `1 - 2dy/dx`