Advertisements
Advertisements
प्रश्न
In the following example verify that the given function is a solution of the differential equation.
`"y" = 3 "cos" (log "x") + 4 sin (log "x"); "x"^2 ("d"^2"y")/"dx"^2 + "x" "dy"/"dx" + "y" = 0`
उत्तर
`"y" = 3 "cos" (log "x") + 4 sin (log "x")` ...(1)
Differentiating both sides w.r.t. x, we get
`"dy"/"dx" = 3 "d"/"dx" [cos (log "x")] + 4 "d"/"dx" [sin (log "x")]`
`= 3 [- sin (log "x")] "d"/"dx" (log "x") + 4 cos (log "x") "d"/"dx" (log "x")`
`= - 3 sin (log "x") xx 1/"x" + 4 cos (log "x") xx 1/"x"`
∴ `"x" "dy"/"dx" = - 3 sin (log "x") + 4 cos (log "x")`
Differentiating again w.r.t. x, we get,
`"x" "d"/"dx" ("dy"/"dx") + "dy"/"dx" * "d"/"dx" ("x") = - 3 "d"/"dx" [sin (log "x")] + 4 "d"/"dx"[cos (log "x")]`
∴ `"x" ("d"^2"y")/"dx"^2 + "dy"/"dx" xx 1 = - 3 cos (log "x") * "d"/"dx" (log "x") + 4 [- sin (log "x")]* "d"/"dx" (log "x")`
∴ `"x" ("d"^2"y")/"dx"^2 + "dy"/"dx" = - 3 cos (log "x") xx 1/"x" - 4 sin (log "x") xx 1/"x"`
∴ `"x"^2 ("d"^2"y")/"dx"^2 + "x" "dy"/"dx" = - [3 cos (log "x") + 4 sin (log "x")] = - "y"` ...[By (1)]
∴ `"x"^2 ("d"^2"y")/"dx"^2 + "x" "dy"/"dx" + "y" = 0`
Hence, y = 3 cos (log x) + 4 sin (log x) is a solution of the D.E. `"x"^2 ("d"^2"y")/"dx"^2 + "x" "dy"/"dx" + "y" = 0`
APPEARS IN
संबंधित प्रश्न
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = Ae5x + Be-5x
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = a + `"a"/"x"`
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = c1e2x + c2e5x
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = e−2x (A cos x + B sin x)
Find the differential equation of all circles having radius 9 and centre at point (h, k).
In the following example verify that the given expression is a solution of the corresponding differential equation:
y = `(sin^-1 "x")^2 + "c"; (1 - "x"^2) ("d"^2"y")/"dx"^2 - "x" "dy"/"dx" = 2`
In the following example verify that the given expression is a solution of the corresponding differential equation:
y = `"a" + "b"/"x"; "x" ("d"^2"y")/"dx"^2 + 2 "dy"/"dx" = 0`
Solve the following differential equation:
`log ("dy"/"dx") = 2"x" + 3"y"`
Solve the following differential equation:
`"sec"^2 "x" * "tan y" "dx" + "sec"^2 "y" * "tan x" "dy" = 0`
For the following differential equation find the particular solution satisfying the given condition:
3ex tan y dx + (1 + ex) sec2 y dy = 0, when x = 0, y = π.
For the following differential equation find the particular solution satisfying the given condition:
`(e^y + 1) cos x + e^y sin x. dy/dx = 0, "when" x = pi/6,` y = 0
For the following differential equation find the particular solution satisfying the given condition:
`("x" + 1) "dy"/"dx" - 1 = 2"e"^-"y" , "y" = 0`, when x = 1
Choose the correct option from the given alternatives:
x2 + y2 = a2 is a solution of
Choose the correct option from the given alternatives:
The differential equation of all circles having their centres on the line y = 5 and touching the X-axis is
In the following example verify that the given function is a solution of the differential equation.
`"x"^2 + "y"^2 = "r"^2; "x" "dy"/"dx" + "r" sqrt(1 + ("dy"/"dx")^2) = "y"`
In the following example verify that the given function is a solution of the differential equation.
`"y" = "e"^"ax" sin "bx"; ("d"^2"y")/"dx"^2 - 2"a" "dy"/"dx" + ("a"^2 + "b"^2)"y" = 0`
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = `sqrt("a" cos (log "x") + "b" sin (log "x"))`
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = `"Ae"^(3"x" + 1) + "Be"^(- 3"x" + 1)`
Solve the following differential equation:
y log y = (log y2 - x) `"dy"/"dx"`
Find the particular solution of the following differential equation:
`("x + 2y"^2) "dy"/"dx" = "y",` when x = 2, y = 1
Find the particular solution of the following differential equation:
`"dy"/"dx" - 3"y" cot "x" = sin "2x"`, when `"y"(pi/2) = 2`
Find the particular solution of the following differential equation:
(x + y)dy + (x - y)dx = 0; when x = 1 = y
Find the particular solution of the following differential equation:
`2e ^(x/y) dx + (y - 2xe^(x/y)) dy = 0," When" y (0) = 1`
The general solution of `(dy)/(dx)` = e−x is ______.
Find the differential equation of family of all ellipse whose major axis is twice the minor axis
Find the differential equation of the family of all non-vertical lines in a plane
Form the differential equation of all straight lines touching the circle x2 + y2 = r2
Find the differential equation of the family of circles passing through the origin and having their centres on the x-axis
Find the differential equations of the family of all the ellipses having foci on the y-axis and centre at the origin
The rate of disintegration of a radio active element at time t is proportional to its mass, at the time. Then the time during which the original mass of 1.5 gm. Will disintegrate into its mass of 0.5 gm. is proportional to ______.
The general solution of the differential equation of all circles having centre at A(- 1, 2) is ______.
The elimination of the arbitrary constant m from the equation y = emx gives the differential equation ______.
The differential equation representing the family of parabolas having vertex at origin and axis along positive direction of X-axis is ______.
For the curve C: (x2 + y2 – 3) + (x2 – y2 – 1)5 = 0, the value of 3y' – y3 y", at the point (α, α), α < 0, on C, is equal to ______.
The differential equation for a2y = log x + b, is ______.