हिंदी

In the following example verify that the given function is a solution of the differential equation. ycosxxxdydxxdydxyy=3cos(logx)+4sin(logx);x2d2ydx2+xdydx+y=0 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

In the following example verify that the given function is a solution of the differential equation.

`"y" = 3 "cos" (log "x") + 4 sin (log "x"); "x"^2 ("d"^2"y")/"dx"^2 + "x" "dy"/"dx" + "y" = 0`

योग

उत्तर

`"y" = 3 "cos" (log "x") + 4 sin (log "x")`    ...(1)

Differentiating both sides w.r.t. x, we get

`"dy"/"dx" = 3 "d"/"dx" [cos (log "x")] + 4 "d"/"dx" [sin (log "x")]`

`= 3 [- sin (log "x")] "d"/"dx" (log "x") + 4 cos (log "x") "d"/"dx" (log "x")`

`= - 3 sin (log "x") xx 1/"x" + 4 cos (log "x") xx 1/"x"`

∴ `"x" "dy"/"dx" = - 3 sin (log "x") + 4 cos (log "x")`

Differentiating again w.r.t. x, we get,

`"x" "d"/"dx" ("dy"/"dx") + "dy"/"dx" * "d"/"dx" ("x") = - 3 "d"/"dx" [sin (log "x")] + 4 "d"/"dx"[cos (log "x")]`

∴ `"x" ("d"^2"y")/"dx"^2 + "dy"/"dx" xx 1 = - 3 cos (log "x") * "d"/"dx" (log "x") + 4 [- sin (log "x")]* "d"/"dx" (log "x")`

∴ `"x" ("d"^2"y")/"dx"^2 + "dy"/"dx" = - 3 cos (log "x") xx 1/"x" - 4 sin (log "x") xx 1/"x"`

∴ `"x"^2 ("d"^2"y")/"dx"^2 + "x" "dy"/"dx" = - [3 cos (log "x") + 4 sin (log "x")] = - "y"`     ...[By (1)]

∴ `"x"^2 ("d"^2"y")/"dx"^2 + "x" "dy"/"dx" + "y" = 0`

Hence, y = 3 cos (log x) + 4 sin (log x) is a solution of the D.E. `"x"^2 ("d"^2"y")/"dx"^2 + "x" "dy"/"dx" + "y" = 0`

shaalaa.com
Formation of Differential Equations
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Differential Equations - Miscellaneous exercise 2 [पृष्ठ २१७]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 6 Differential Equations
Miscellaneous exercise 2 | Q 2.3 | पृष्ठ २१७

संबंधित प्रश्न

Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = Ae5x + Be-5x 


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = a + `"a"/"x"`


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = c1e2x + c2e5x 


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = e−2x (A cos x + B sin x)


Find the differential equation of all circles having radius 9 and centre at point (h, k).


In the following example verify that the given expression is a solution of the corresponding differential equation:

y = `(sin^-1 "x")^2 + "c"; (1 - "x"^2) ("d"^2"y")/"dx"^2 - "x" "dy"/"dx" = 2`


In the following example verify that the given expression is a solution of the corresponding differential equation:

y = `"a" + "b"/"x"; "x" ("d"^2"y")/"dx"^2 + 2 "dy"/"dx" = 0`


Solve the following differential equation:

`log  ("dy"/"dx") = 2"x" + 3"y"`


Solve the following differential equation:

`"sec"^2 "x" * "tan y"  "dx" + "sec"^2 "y" * "tan x"  "dy" = 0` 


For the following differential equation find the particular solution satisfying the given condition:

3ex tan y dx + (1 + ex) sec2 y dy = 0, when x = 0, y = π.


For the following differential equation find the particular solution satisfying the given condition:

`(e^y + 1) cos x + e^y sin x. dy/dx = 0,  "when" x = pi/6,` y = 0


For the following differential equation find the particular solution satisfying the given condition:

`("x" + 1) "dy"/"dx" - 1 = 2"e"^-"y" , "y" = 0`, when x = 1


Choose the correct option from the given alternatives:

x2 + y2 = a2 is a solution of


Choose the correct option from the given alternatives:

The differential equation of all circles having their centres on the line y = 5 and touching the X-axis is


In the following example verify that the given function is a solution of the differential equation.

`"x"^2 + "y"^2 = "r"^2; "x" "dy"/"dx" + "r" sqrt(1 + ("dy"/"dx")^2) = "y"`


In the following example verify that the given function is a solution of the differential equation.

`"y" = "e"^"ax" sin "bx"; ("d"^2"y")/"dx"^2 - 2"a" "dy"/"dx" + ("a"^2 + "b"^2)"y" = 0`


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = `sqrt("a" cos (log "x") + "b" sin (log "x"))`


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = `"Ae"^(3"x" + 1) + "Be"^(- 3"x" + 1)`


Solve the following differential equation:

y log y = (log y2 - x) `"dy"/"dx"`


Find the particular solution of the following differential equation:

`("x + 2y"^2) "dy"/"dx" = "y",` when x = 2, y = 1


Find the particular solution of the following differential equation:

`"dy"/"dx" - 3"y" cot "x" = sin "2x"`, when `"y"(pi/2) = 2`


Find the particular solution of the following differential equation:

(x + y)dy + (x - y)dx = 0; when x = 1 = y


Find the particular solution of the following differential equation:

`2e ^(x/y) dx + (y - 2xe^(x/y)) dy = 0," When" y (0) = 1`


The general solution of `(dy)/(dx)` = e−x is ______.


Find the differential equation of family of all ellipse whose major axis is twice the minor axis


Find the differential equation of the family of all non-vertical lines in a plane


Form the differential equation of all straight lines touching the circle x2 + y2 = r2


Find the differential equation of the family of circles passing through the origin and having their centres on the x-axis


Find the differential equations of the family of all the ellipses having foci on the y-axis and centre at the origin


The rate of disintegration of a radio active element at time t is proportional to its mass, at the time. Then the time during which the original mass of 1.5 gm. Will disintegrate into its mass of 0.5 gm. is proportional to ______.


The general solution of the differential equation of all circles having centre at A(- 1, 2) is ______.


The elimination of the arbitrary constant m from the equation y = emx gives the differential equation ______.


The differential equation representing the family of parabolas having vertex at origin and axis along positive direction of X-axis is ______.


For the curve C: (x2 + y2 – 3) + (x2 – y2 – 1)5 = 0, the value of 3y' – y3 y", at the point (α, α), α < 0, on C, is equal to ______.


The differential equation for a2y = log x + b, is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×