हिंदी

Find the differential equation of family of all ellipse whose major axis is twice the minor axis - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the differential equation of family of all ellipse whose major axis is twice the minor axis

योग

उत्तर

Let the equation of ellipse be

`x^2/"a"^2 + y^2/"b"^2` = 1     ......(i)

Since the major axis is twice the minor axis,

2a = 2(2b)

∴ a = 2b     ......(ii)

Substituting (ii) in (i), we get

`x^2/(2"b")^2 + y^2/"b"^2` = 1

∴ `x^2/(4"b"^2) + y^2/"b"^2` = 1 

∴ x2 + 4y2 = 4b2

Differentiating w.r.t. x, we get

`2x + 8y  ("d"y)/("d"x)` = 0

∴ `x + 4y ("d"y)/("d"x)` = 0, where is the required differential equation.

shaalaa.com
Formation of Differential Equations
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2.6: Differential Equations - Attempt the following questions I

संबंधित प्रश्न

Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = Ae5x + Be-5x 


Form the differential equation of family of lines having intercepts a and b on the co-ordinate ares respectively.


In the following example verify that the given expression is a solution of the corresponding differential equation:

xy = log y +c; `"dy"/"dx" = "y"^2/(1 - "xy")`


In the following example verify that the given expression is a solution of the corresponding differential equation:

y = xm; `"x"^2 ("d"^2"y")/"dx"^2 - "mx" "dy"/"dx" + "my" = 0`


In the following example verify that the given expression is a solution of the corresponding differential equation:

y = `"e"^"ax"; "x" "dy"/"dx" = "y" log "y"`


For the following differential equation find the particular solution satisfying the given condition:

`y(1 + log x) dx/dy - x log x = 0, y = e^2,` when x = e


For the following differential equation find the particular solution satisfying the given condition:

`(e^y + 1) cos x + e^y sin x. dy/dx = 0,  "when" x = pi/6,` y = 0


For the following differential equation find the particular solution satisfying the given condition:

`cos("dy"/"dx") = "a", "a" ∈ "R", "y"(0) = 2`


Reduce the following differential equation to the variable separable form and hence solve:

`"x + y""dy"/"dx" = sec("x"^2 + "y"^2)`


Solve the following differential equation:

(x2 + y2)dx - 2xy dy = 0


Choose the correct option from the given alternatives:

The differential equation of y = `"c"^2 + "c"/"x"` is


Choose the correct option from the given alternatives:

The solution of `("x + y")^2 "dy"/"dx" = 1` is


Choose the correct option from the given alternatives:

The solution of `"dy"/"dx" + "y" = cos "x" - sin "x"`


The integrating factor of linear differential equation `x dy/dx + 2y = x^2 log x` is ______.


Choose the correct option from the given alternatives:

The solution of the differential equation `"dy"/"dx" = sec "x" - "y" tan "x"`


The particular solution of `dy/dx = xe^(y - x)`, when x = y = 0 is ______.


Choose the correct option from the given alternatives:

`"x"^2/"a"^2 - "y"^2/"b"^2 = 1` is a solution of


In the following example verify that the given function is a solution of the differential equation.

`"x"^2 + "y"^2 = "r"^2; "x" "dy"/"dx" + "r" sqrt(1 + ("dy"/"dx")^2) = "y"`


In the following example verify that the given function is a solution of the differential equation.

`"y" = "e"^"ax" sin "bx"; ("d"^2"y")/"dx"^2 - 2"a" "dy"/"dx" + ("a"^2 + "b"^2)"y" = 0`


Form the differential equation of all parabolas which have 4b as latus rectum and whose axis is parallel to the Y-axis.


Solve the following differential equation:

`"dy"/"dx" = "x"^2"y" + "y"`


Solve the following differential equation:

`"dy"/"dx" = ("2y" - "x")/("2y + x")`


Solve the following differential equation:

y log y = (log y2 - x) `"dy"/"dx"`


Solve the following differential equation:

`"dx"/"dy" + "8x" = 5"e"^(- 3"y")`


Find the particular solution of the following differential equation:

`"dy"/"dx" - 3"y" cot "x" = sin "2x"`, when `"y"(pi/2) = 2`


Find the particular solution of the following differential equation:

(x + y)dy + (x - y)dx = 0; when x = 1 = y


Find the particular solution of the following differential equation:

`2e ^(x/y) dx + (y - 2xe^(x/y)) dy = 0," When" y (0) = 1`


Select and write the correct alternative from the given option for the question

Solution of the equation `x  ("d"y)/("d"x)` = y log y is


Select and write the correct alternative from the given option for the question

General solution of `y - x ("d"y)/("d"x)` = 0 is


Form the differential equation of family of standard circle


Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0


The family of curves y = `e^("a" sin x)`, where a is an arbitrary constant, is represented by the differential equation.


Find the differential equation of the family of all non-horizontal lines in a plane 


Find the differential equations of the family of all the ellipses having foci on the y-axis and centre at the origin


Find the differential equation corresponding to the family of curves represented by the equation y = Ae8x + Be 8x, where A and B are arbitrary constants


The general solution of the differential equation of all circles having centre at A(- 1, 2) is ______.


The differential equation for all the straight lines which are at the distance of 2 units from the origin is ______.


The differential equation whose solution is (x – h)2 + (y – k)2 = a2 is (where a is a constant) ______.


If y = (tan–1 x)2 then `(x^2 + 1)^2 (d^2y)/(dx^2) + 2x(x^2 + 1) (dy)/(dx)` = ______.


If 2x = `y^(1/m) + y^(-1/m)`, then show that `(x^2 - 1) (dy/dx)^2` = m2y2


Find the particular solution of the differential equation `x^2 dy/dx + y^2 = xy dy/dx`, if y = 1 when x = 1.


Form the differential equation of all concentric circles having centre at the origin.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×