हिंदी

Form the differential equation of family of lines having intercepts a and b on the co-ordinate ares respectively. - Mathematics and Statistics

Advertisements
Advertisements

उत्तर

The equation of the line having intercepts a and b on the coordinate axes respectively, is

`"x"/"a" + "y"/"b" = 1`   ...(1)

where a and b are arbitrary constants.

Differentiating (1) w.r.t. x, we get

`1/"a" (1) + (1/"b") * "dy"/"dx" = 0`

∴ `(1/"b")"dy"/"dx" = - 1/"a"`

∴ `"dy"/"dx" = - "b"/"a"`

Differentiating again w.r.t. x, we get

`("d"^2"y")/"dx"^2 = 0`

This is the required D.E.

shaalaa.com
Formation of Differential Equations
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Differential Equations - Exercise 6.2 [पृष्ठ १९६]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 6 Differential Equations
Exercise 6.2 | Q 2 | पृष्ठ १९६

संबंधित प्रश्न

Obtain the differential equation by eliminating the arbitrary constants from the following equation:

x3 + y3 = 4ax


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

Ax2 + By2 = 1


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = A cos (log x) + B sin (log x)


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = a + `"a"/"x"`


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

c1x3 + c2y2 = 5


In the following example verify that the given expression is a solution of the corresponding differential equation:

y = e-x + Ax + B; `"e"^"x" ("d"^2"y")/"dx"^2 = 1`


Solve the following differential equation:

`log  ("dy"/"dx") = 2"x" + 3"y"`


Solve the following differential equation:

cos x . cos y dy − sin x . sin y dx = 0


Solve the following differential equation:

`"dy"/"dx" = - "k",` where k is a constant.


Solve the following differential equation:

`"y"^3 - "dy"/"dx" = "x"^2 "dy"/"dx"`


Solve the following differential equation:

`"dy"/"dx" = "e"^("x + y") + "x"^2 "e"^"y"`


Reduce the following differential equation to the variable separable form and hence solve:

`cos^2 ("x - 2y") = 1 - 2 "dy"/"dx"`


Choose the correct option from the given alternatives:

The differential equation of all circles having their centres on the line y = 5 and touching the X-axis is


Choose the correct option from the given alternatives:

The solution of `"dy"/"dx" + "y" = cos "x" - sin "x"`


The particular solution of `dy/dx = xe^(y - x)`, when x = y = 0 is ______.


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

`"y"^2 = "a"("b - x")("b + x")`


In the following example verify that the given function is a solution of the differential equation.

`"y" = "e"^"ax" sin "bx"; ("d"^2"y")/"dx"^2 - 2"a" "dy"/"dx" + ("a"^2 + "b"^2)"y" = 0`


In the following example verify that the given function is a solution of the differential equation.

`"x"^2 = "2y"^2 log "y",  "x"^2 + "y"^2 = "xy" "dx"/"dy"`


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

(y - a)2 = b(x + 4)


Solve the following differential equation:

`"dy"/"dx" = "x"^2"y" + "y"`


Find the particular solution of the following differential equation:

`("x + 2y"^2) "dy"/"dx" = "y",` when x = 2, y = 1


Find the particular solution of the following differential equation:

(x + y)dy + (x - y)dx = 0; when x = 1 = y


The general solution of `(dy)/(dx)` = e−x is ______.


Select and write the correct alternative from the given option for the question

The solution of `("d"y)/("d"x)` = 1 is


Form the differential equation of family of standard circle


Find the differential equation by eliminating arbitrary constants from the relation x2 + y2 = 2ax


Find the differential equation of the family of all non-horizontal lines in a plane 


Find the differential equation of the family of parabolas with vertex at (0, –1) and having axis along the y-axis


The rate of disintegration of a radio active element at time t is proportional to its mass, at the time. Then the time during which the original mass of 1.5 gm. Will disintegrate into its mass of 0.5 gm. is proportional to ______.


The differential equation of all lines perpendicular to the line 5x + 2y + 7 = 0 is ____________.


The general solution of the differential equation of all circles having centre at A(- 1, 2) is ______.


Solve the differential equation

cos2(x – 2y) = `1 - 2dy/dx`


If 2x = `y^(1/m) + y^(-1/m)`, then show that `(x^2 - 1) (dy/dx)^2` = m2y2


Solve the differential equation

ex tan y dx + (1 + ex) sec2 y dy = 0


A particle is moving along the X-axis. Its acceleration at time t is proportional to its velocity at that time. Find the differential equation of the motion of the particle.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×