हिंदी

Obtain the differential equation by eliminating the arbitrary constants from the following equation: y = A cos (log x) + B sin (log x) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = A cos (log x) + B sin (log x)

योग

उत्तर

y = A cos (log x) + B sin (log x)    ...(1)

Differentiating w.r.t. x, we get

`"dy"/"dx" = - "A  sin" ("log x")*"d"/"dx" ("log  x") + "B cos" ("log x")*"d"/"dx" ("log x")`

`= (- "A sin" ("log x"))/"x" + ("B cos" (log "x"))/"x"`

∴ `"x" "dy"/"dx"` = – A sin (log x) + B cos (log x)

Differentiating again w.r.t. x, we get

`"x" ("d"^2"y")/"dx"^2 + "dy"/"dx" = (- "A cos" ("log x"))/"x" + ("B sin" (log "x"))/"x"`

∴ `"x"^2 ("d"^2"y")/"dx"^2 + "x""dy"/"dx"` = – [A cos (log x) + B sin (log x)] = – y    .....[By (1)]

∴ `"x"^2 ("d"^2"y")/"dx"^2 + "x""dy"/"dx" + "y"` = 0 is the required D.E.

shaalaa.com
Formation of Differential Equations
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Differential Equations - Exercise 6.2 [पृष्ठ १९६]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 6 Differential Equations
Exercise 6.2 | Q 1.03 | पृष्ठ १९६

संबंधित प्रश्न

Obtain the differential equation by eliminating the arbitrary constants from the following equation:

Ax2 + By2 = 1


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y2 = (x + c)3


Form the differential equation of family of lines having intercepts a and b on the co-ordinate ares respectively.


Find the differential equation all parabolas having a length of latus rectum 4a and axis is parallel to the axis.


Find the differential equation of the ellipse whose major axis is twice its minor axis.


In the following example verify that the given expression is a solution of the corresponding differential equation:

y = `(sin^-1 "x")^2 + "c"; (1 - "x"^2) ("d"^2"y")/"dx"^2 - "x" "dy"/"dx" = 2`


In the following example verify that the given expression is a solution of the corresponding differential equation:

y = `"e"^"ax"; "x" "dy"/"dx" = "y" log "y"`


Solve the following differential equation:

`"sec"^2 "x" * "tan y"  "dx" + "sec"^2 "y" * "tan x"  "dy" = 0` 


Solve the following differential equation:

`"dy"/"dx" = - "k",` where k is a constant.


Solve the following differential equation:

`(cos^2y)/x dy + (cos^2x)/y dx` = 0


Solve the following differential equation:

`2"e"^("x + 2y") "dx" - 3"dy" = 0`


Solve the following differential equation:

`"dy"/"dx" = "e"^("x + y") + "x"^2 "e"^"y"`


For the following differential equation find the particular solution satisfying the given condition:

3ex tan y dx + (1 + ex) sec2 y dy = 0, when x = 0, y = π.


For the following differential equation find the particular solution satisfying the given condition:

`cos("dy"/"dx") = "a", "a" ∈ "R", "y"(0) = 2`


Reduce the following differential equation to the variable separable form and hence solve:

`"dy"/"dx" = cos("x + y")`


Reduce the following differential equation to the variable separable form and hence solve:

`"x + y""dy"/"dx" = sec("x"^2 + "y"^2)`


Solve the following differential equation:

(x2 + y2)dx - 2xy dy = 0


Choose the correct option from the given alternatives:

The solution of `("x + y")^2 "dy"/"dx" = 1` is


In the following example verify that the given function is a solution of the differential equation.

`"x"^2 + "y"^2 = "r"^2; "x" "dy"/"dx" + "r" sqrt(1 + ("dy"/"dx")^2) = "y"`


In the following example verify that the given function is a solution of the differential equation.

`"xy" = "ae"^"x" + "be"^-"x" + "x"^2; "x" ("d"^2"y")/"dx"^2 + 2 "dy"/"dx" + "x"^2 = "xy" + 2`


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = `"Ae"^(3"x" + 1) + "Be"^(- 3"x" + 1)`


Form the differential equation of all the lines which are normal to the line 3x + 2y + 7 = 0.


Find the particular solution of the following differential equation:

`("x + 2y"^2) "dy"/"dx" = "y",` when x = 2, y = 1


Find the particular solution of the following differential equation:

`"dy"/"dx" - 3"y" cot "x" = sin "2x"`, when `"y"(pi/2) = 2`


Find the particular solution of the following differential equation:

`2e ^(x/y) dx + (y - 2xe^(x/y)) dy = 0," When" y (0) = 1`


Select and write the correct alternative from the given option for the question

Solution of the equation `x  ("d"y)/("d"x)` = y log y is


Find the differential equation of family of all ellipse whose major axis is twice the minor axis


Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0


The family of curves y = `e^("a" sin x)`, where a is an arbitrary constant, is represented by the differential equation.


Find the differential equations of the family of all the ellipses having foci on the y-axis and centre at the origin


Find the differential equation corresponding to the family of curves represented by the equation y = Ae8x + Be 8x, where A and B are arbitrary constants


Find the differential equation of the curve represented by xy = aex + be–x + x2


Choose the correct alternative:

The slope at any point of a curve y = f(x) is given by `("d"y)/("d"x) - 3x^2` and it passes through (-1, 1). Then the equation of the curve is


The rate of disintegration of a radio active element at time t is proportional to its mass, at the time. Then the time during which the original mass of 1.5 gm. Will disintegrate into its mass of 0.5 gm. is proportional to ______.


Form the differential equation of all lines which makes intercept 3 on x-axis.


The differential equation of all parabolas whose axis is Y-axis, is ______.


Form the differential equation of all concentric circles having centre at the origin.


A particle is moving along the X-axis. Its acceleration at time t is proportional to its velocity at that time. Find the differential equation of the motion of the particle.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×