Advertisements
Advertisements
प्रश्न
Solve the following differential equation:
`2"e"^("x + 2y") "dx" - 3"dy" = 0`
उत्तर
`2"e"^("x + 2y") "dx" - 3"dy" = 0`
∴ `2"e"^"x" * "e"^"2y" "dx" - 3"dy" = 0`
∴ `2"e"^"x" "dx" - 3/"e"^"2y" "dy" = 0`
Integrating both sides, we get
`2 int "e"^"x" "dx" - 3 int "e"^(-2"y") "dy" = "c"_1`
∴ `2"e"^"x" - 3 * ("e"^(- "2y"))/(- 2) = "c"_1`
∴ `4"e"^"x" + 3"e"^(- 2"y") = 2"c"_1`
∴ `4"e"^"x" + 3"e"^(- 2"y") = "c"`, where c = 2c1.
This is the general solution.
APPEARS IN
संबंधित प्रश्न
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = A cos (log x) + B sin (log x)
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = e−2x (A cos x + B sin x)
Find the differential equation of the ellipse whose major axis is twice its minor axis.
Find the differential equation of all circles having radius 9 and centre at point (h, k).
Form the differential equation of family of lines parallel to the line 2x + 3y + 4 = 0.
Form the differential equation of all parabolas whose axis is the X-axis.
In the following example verify that the given expression is a solution of the corresponding differential equation:
xy = log y +c; `"dy"/"dx" = "y"^2/(1 - "xy")`
In the following example verify that the given expression is a solution of the corresponding differential equation:
y = e-x + Ax + B; `"e"^"x" ("d"^2"y")/"dx"^2 = 1`
In the following example verify that the given expression is a solution of the corresponding differential equation:
y = xm; `"x"^2 ("d"^2"y")/"dx"^2 - "mx" "dy"/"dx" + "my" = 0`
Solve the following differential equation:
`"dy"/"dx" = (1 + "y")^2/(1 + "x")^2`
Solve the following differential equation:
`"dy"/"dx" = "e"^("x + y") + "x"^2 "e"^"y"`
For the following differential equation find the particular solution satisfying the given condition:
3ex tan y dx + (1 + ex) sec2 y dy = 0, when x = 0, y = π.
For the following differential equation find the particular solution satisfying the given condition:
`(e^y + 1) cos x + e^y sin x. dy/dx = 0, "when" x = pi/6,` y = 0
For the following differential equation find the particular solution satisfying the given condition:
`("x" + 1) "dy"/"dx" - 1 = 2"e"^-"y" , "y" = 0`, when x = 1
The particular solution of `dy/dx = xe^(y - x)`, when x = y = 0 is ______.
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
`"y"^2 = "a"("b - x")("b + x")`
In the following example verify that the given function is a solution of the differential equation.
`"x"^2 + "y"^2 = "r"^2; "x" "dy"/"dx" + "r" sqrt(1 + ("dy"/"dx")^2) = "y"`
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = `sqrt("a" cos (log "x") + "b" sin (log "x"))`
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = `"Ae"^(3"x" + 1) + "Be"^(- 3"x" + 1)`
Form the differential equation of the hyperbola whose length of transverse and conjugate axes are half of that of the given hyperbola `"x"^2/16 - "y"^2/36 = "k"`.
Solve the following differential equation:
x dy = (x + y + 1) dx
Solve the following differential equation:
`"dy"/"dx" + "y cot x" = "x"^2 "cot x" + "2x"`
Solve the following differential equation:
y log y = (log y2 - x) `"dy"/"dx"`
Solve the following differential equation:
`"dx"/"dy" + "8x" = 5"e"^(- 3"y")`
Find the particular solution of the following differential equation:
y(1 + log x) = (log xx) `"dy"/"dx"`, when y(e) = e2
Select and write the correct alternative from the given option for the question
Solution of the equation `x ("d"y)/("d"x)` = y log y is
Select and write the correct alternative from the given option for the question
The solution of `("d"y)/("d"x)` = 1 is
Select and write the correct alternative from the given option for the question
The solutiion of `("d"y)/("d"x) + x^2/y^2` = 0 is
Find the general solution of `("d"y)/("d"x) = (1 + y^2)/(1 + x^2)`
Form the differential equation of family of standard circle
Form the differential equation of all straight lines touching the circle x2 + y2 = r2
The differential equation of all lines perpendicular to the line 5x + 2y + 7 = 0 is ____________.
The elimination of the arbitrary constant m from the equation y = emx gives the differential equation ______.
Solve the following differential equation:
`xsin(y/x)dy = [ysin(y/x) - x]dx`
The differential equation of the family of circles touching Y-axis at the origin is ______.
Find the particular solution of the differential equation `x^2 dy/dx + y^2 = xy dy/dx`, if y = 1 when x = 1.
A particle is moving along the X-axis. Its acceleration at time t is proportional to its velocity at that time. Find the differential equation of the motion of the particle.