English

In the following example verify that the given function is a solution of the differential equation. ycosxxxdydxxdydxyy=3cos(logx)+4sin(logx);x2d2ydx2+xdydx+y=0 - Mathematics and Statistics

Advertisements
Advertisements

Question

In the following example verify that the given function is a solution of the differential equation.

`"y" = 3 "cos" (log "x") + 4 sin (log "x"); "x"^2 ("d"^2"y")/"dx"^2 + "x" "dy"/"dx" + "y" = 0`

Sum

Solution

`"y" = 3 "cos" (log "x") + 4 sin (log "x")`    ...(1)

Differentiating both sides w.r.t. x, we get

`"dy"/"dx" = 3 "d"/"dx" [cos (log "x")] + 4 "d"/"dx" [sin (log "x")]`

`= 3 [- sin (log "x")] "d"/"dx" (log "x") + 4 cos (log "x") "d"/"dx" (log "x")`

`= - 3 sin (log "x") xx 1/"x" + 4 cos (log "x") xx 1/"x"`

∴ `"x" "dy"/"dx" = - 3 sin (log "x") + 4 cos (log "x")`

Differentiating again w.r.t. x, we get,

`"x" "d"/"dx" ("dy"/"dx") + "dy"/"dx" * "d"/"dx" ("x") = - 3 "d"/"dx" [sin (log "x")] + 4 "d"/"dx"[cos (log "x")]`

∴ `"x" ("d"^2"y")/"dx"^2 + "dy"/"dx" xx 1 = - 3 cos (log "x") * "d"/"dx" (log "x") + 4 [- sin (log "x")]* "d"/"dx" (log "x")`

∴ `"x" ("d"^2"y")/"dx"^2 + "dy"/"dx" = - 3 cos (log "x") xx 1/"x" - 4 sin (log "x") xx 1/"x"`

∴ `"x"^2 ("d"^2"y")/"dx"^2 + "x" "dy"/"dx" = - [3 cos (log "x") + 4 sin (log "x")] = - "y"`     ...[By (1)]

∴ `"x"^2 ("d"^2"y")/"dx"^2 + "x" "dy"/"dx" + "y" = 0`

Hence, y = 3 cos (log x) + 4 sin (log x) is a solution of the D.E. `"x"^2 ("d"^2"y")/"dx"^2 + "x" "dy"/"dx" + "y" = 0`

shaalaa.com
Formation of Differential Equations
  Is there an error in this question or solution?
Chapter 6: Differential Equations - Miscellaneous exercise 2 [Page 217]

APPEARS IN

Balbharati Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
Chapter 6 Differential Equations
Miscellaneous exercise 2 | Q 2.3 | Page 217

RELATED QUESTIONS

Obtain the differential equation by eliminating the arbitrary constants from the following equation:

x3 + y3 = 4ax


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

Ax2 + By2 = 1


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y2 = (x + c)3


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = Ae5x + Be-5x 


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

c1x3 + c2y2 = 5


Find the differential equation of the ellipse whose major axis is twice its minor axis.


Find the differential equation of all circles having radius 9 and centre at point (h, k).


In the following example verify that the given expression is a solution of the corresponding differential equation:

y = `(sin^-1 "x")^2 + "c"; (1 - "x"^2) ("d"^2"y")/"dx"^2 - "x" "dy"/"dx" = 2`


Solve the following differential equation:

`"dy"/"dx" = (1 + "y")^2/(1 + "x")^2`


Solve the following differential equation:

`log  ("dy"/"dx") = 2"x" + 3"y"`


For the following differential equation find the particular solution satisfying the given condition:

`(e^y + 1) cos x + e^y sin x. dy/dx = 0,  "when" x = pi/6,` y = 0


Reduce the following differential equation to the variable separable form and hence solve:

`("x - y")^2 "dy"/"dx" = "a"^2`


Reduce the following differential equation to the variable separable form and hence solve:

(2x - 2y + 3)dx - (x - y + 1)dy = 0, when x = 0, y = 1.


Choose the correct option from the given alternatives:

The differential equation of y = `"c"^2 + "c"/"x"` is


Choose the correct option from the given alternatives:

x2 + y2 = a2 is a solution of


Choose the correct option from the given alternatives:

The solution of `("x + y")^2 "dy"/"dx" = 1` is


Choose the correct option from the given alternatives:

The solution of `"dy"/"dx" + "y" = cos "x" - sin "x"`


Choose the correct option from the given alternatives:

The solution of the differential equation `"dy"/"dx" = sec "x" - "y" tan "x"`


The particular solution of `dy/dx = xe^(y - x)`, when x = y = 0 is ______.


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

`"y"^2 = "a"("b - x")("b + x")`


In the following example verify that the given function is a solution of the differential equation.

`"x"^2 = "2y"^2 log "y",  "x"^2 + "y"^2 = "xy" "dx"/"dy"`


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

(y - a)2 = b(x + 4)


Form the differential equation of the hyperbola whose length of transverse and conjugate axes are half of that of the given hyperbola `"x"^2/16 - "y"^2/36 = "k"`.


Solve the following differential equation:

`"dy"/"dx" = ("2y" - "x")/("2y + x")`


Find the particular solution of the following differential equation:

`"dy"/"dx" - 3"y" cot "x" = sin "2x"`, when `"y"(pi/2) = 2`


Find the particular solution of the following differential equation:

(x + y)dy + (x - y)dx = 0; when x = 1 = y


Find the general solution of `("d"y)/("d"x) = (1 + y^2)/(1 + x^2)`


Form the differential equation of family of standard circle


Form the differential equation of y = (c1 + c2)ex 


Find the differential equation by eliminating arbitrary constants from the relation y = (c1 + c2x)ex 


The family of curves y = `e^("a" sin x)`, where a is an arbitrary constant, is represented by the differential equation.


The differential equation whose solution is (x – h)2 + (y – k)2 = a2 is (where a is a constant) ______.


Form the differential equation whose general solution is y = a cos 2x + b sin 2x.


Form the differential equation of all concentric circles having centre at the origin.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×