Advertisements
Advertisements
प्रश्न
In the following example verify that the given function is a solution of the differential equation.
`"y" = 3 "cos" (log "x") + 4 sin (log "x"); "x"^2 ("d"^2"y")/"dx"^2 + "x" "dy"/"dx" + "y" = 0`
उत्तर
`"y" = 3 "cos" (log "x") + 4 sin (log "x")` ...(1)
Differentiating both sides w.r.t. x, we get
`"dy"/"dx" = 3 "d"/"dx" [cos (log "x")] + 4 "d"/"dx" [sin (log "x")]`
`= 3 [- sin (log "x")] "d"/"dx" (log "x") + 4 cos (log "x") "d"/"dx" (log "x")`
`= - 3 sin (log "x") xx 1/"x" + 4 cos (log "x") xx 1/"x"`
∴ `"x" "dy"/"dx" = - 3 sin (log "x") + 4 cos (log "x")`
Differentiating again w.r.t. x, we get,
`"x" "d"/"dx" ("dy"/"dx") + "dy"/"dx" * "d"/"dx" ("x") = - 3 "d"/"dx" [sin (log "x")] + 4 "d"/"dx"[cos (log "x")]`
∴ `"x" ("d"^2"y")/"dx"^2 + "dy"/"dx" xx 1 = - 3 cos (log "x") * "d"/"dx" (log "x") + 4 [- sin (log "x")]* "d"/"dx" (log "x")`
∴ `"x" ("d"^2"y")/"dx"^2 + "dy"/"dx" = - 3 cos (log "x") xx 1/"x" - 4 sin (log "x") xx 1/"x"`
∴ `"x"^2 ("d"^2"y")/"dx"^2 + "x" "dy"/"dx" = - [3 cos (log "x") + 4 sin (log "x")] = - "y"` ...[By (1)]
∴ `"x"^2 ("d"^2"y")/"dx"^2 + "x" "dy"/"dx" + "y" = 0`
Hence, y = 3 cos (log x) + 4 sin (log x) is a solution of the D.E. `"x"^2 ("d"^2"y")/"dx"^2 + "x" "dy"/"dx" + "y" = 0`
APPEARS IN
संबंधित प्रश्न
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = A cos (log x) + B sin (log x)
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y2 = (x + c)3
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
(y - a)2 = 4(x - b)
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = e−2x (A cos x + B sin x)
In the following example verify that the given expression is a solution of the corresponding differential equation:
y = `"a" + "b"/"x"; "x" ("d"^2"y")/"dx"^2 + 2 "dy"/"dx" = 0`
Solve the following differential equation:
`log ("dy"/"dx") = 2"x" + 3"y"`
Solve the following differential equation:
`"y" - "x" "dy"/"dx" = 0`
Solve the following differential equation:
`(cos^2y)/x dy + (cos^2x)/y dx` = 0
For the following differential equation find the particular solution satisfying the given condition:
3ex tan y dx + (1 + ex) sec2 y dy = 0, when x = 0, y = π.
Reduce the following differential equation to the variable separable form and hence solve:
`"dy"/"dx" = cos("x + y")`
Reduce the following differential equation to the variable separable form and hence solve:
`("x - y")^2 "dy"/"dx" = "a"^2`
Reduce the following differential equation to the variable separable form and hence solve:
`"x + y""dy"/"dx" = sec("x"^2 + "y"^2)`
Reduce the following differential equation to the variable separable form and hence solve:
`cos^2 ("x - 2y") = 1 - 2 "dy"/"dx"`
Choose the correct option from the given alternatives:
The differential equation of y = `"c"^2 + "c"/"x"` is
Choose the correct option from the given alternatives:
The solution of `"dy"/"dx" = ("y" + sqrt("x"^2 - "y"^2))/"x"` is
Choose the correct option from the given alternatives:
The solution of the differential equation `"dy"/"dx" = sec "x" - "y" tan "x"`
In the following example verify that the given function is a solution of the differential equation.
`"xy" = "ae"^"x" + "be"^-"x" + "x"^2; "x" ("d"^2"y")/"dx"^2 + 2 "dy"/"dx" + "x"^2 = "xy" + 2`
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = `sqrt("a" cos (log "x") + "b" sin (log "x"))`
Form the differential equation of all the lines which are normal to the line 3x + 2y + 7 = 0.
Form the differential equation of the hyperbola whose length of transverse and conjugate axes are half of that of the given hyperbola `"x"^2/16 - "y"^2/36 = "k"`.
Solve the following differential equation:
y log y = (log y2 - x) `"dy"/"dx"`
Find the particular solution of the following differential equation:
`("x + 2y"^2) "dy"/"dx" = "y",` when x = 2, y = 1
Select and write the correct alternative from the given option for the question
Solution of the equation `x ("d"y)/("d"x)` = y log y is
Select and write the correct alternative from the given option for the question
The solutiion of `("d"y)/("d"x) + x^2/y^2` = 0 is
Find the differential equation of family of all ellipse whose major axis is twice the minor axis
Find the differential equation from the relation x2 + 4y2 = 4b2
Find the differential equation of the family of all non-vertical lines in a plane
Find the differential equations of the family of all the ellipses having foci on the y-axis and centre at the origin
Find the differential equation corresponding to the family of curves represented by the equation y = Ae8x + Be –8x, where A and B are arbitrary constants
Find the differential equation of the curve represented by xy = aex + be–x + x2
The general solution of the differential equation of all circles having centre at A(- 1, 2) is ______.
The elimination of the arbitrary constant m from the equation y = emx gives the differential equation ______.
The differential equation for all the straight lines which are at the distance of 2 units from the origin is ______.
Form the differential equation of all lines which makes intercept 3 on x-axis.
For the curve C: (x2 + y2 – 3) + (x2 – y2 – 1)5 = 0, the value of 3y' – y3 y", at the point (α, α), α < 0, on C, is equal to ______.
The differential equation of all parabolas having vertex at the origin and axis along positive Y-axis is ______.
Form the differential equation whose general solution is y = a cos 2x + b sin 2x.