मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

In the following example verify that the given function is a solution of the differential equation. yeaxbxdydxadydxabyy=eaxsinbx;d2ydx2-2adydx+(a2+b2)y=0 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

In the following example verify that the given function is a solution of the differential equation.

`"y" = "e"^"ax" sin "bx"; ("d"^2"y")/"dx"^2 - 2"a" "dy"/"dx" + ("a"^2 + "b"^2)"y" = 0`

बेरीज

उत्तर

`"y" = "e"^"ax" sin "bx"`

∴ `"dy"/"dx" = "d"/"dx"("e"^"ax" sin "bx")`

`= "e"^"ax" * "d"/"dx" (sin "bx") + sin "bx" * "d"/"dx" ("e"^"ax")`

`= "e"^"ax" xx cos "bx" * "d"/"dx" ("bx") + sin "bx" * "e"^"ax" * "d"/"dx" ("ax")`

`= "e"^"ax" cos "bx" xx "b" + "e"^"ax" sin "bx" xx "a"`

`= "e"^"ax" ("b" cos "bx" + "a" sin "bx")`

and `("d"^2"y")/"dx"^2 = "d"/"dx"["e"^"ax" ("b" cos "bx" + "a" sin "bx")]`

`= "e"^"ax" * "d"/"dx" ("b" cos "bx" + "a" sin "bx") + ("b" cos "bx" + "a" sin "bx")*"d"/"dx"("e"^"ax")`

`= "e"^"ax" ["b" (- sin "bx") * "d"/"dx" ("bx") + "a" cos "bx" * "d"/"dx"("bx")] + ("b" cos "bx" + "a" sin "bx") * "e"^"ax" * "d"/"dx" ("ax")`

`= "e"^"ax" [- "b" sin "bx" xx "b" + "a" cos "bx" xx "b"] + ("b" cos "bx" + "a" sin bx) * "e"^"ax" xx "a"`

`= "e"^"ax" (- "b"^2 sin "bx" + "ab" cos "bx" +"ab" cos "bx" + "a"^2 sin "bx")`

`= "e"^"ax" [("a"^2 - "b"^2) sin "bx" + 2"ab" cos "bx"]`

∴ `("d"^2"y")/"dx"^2 - 2"a" "dy"/"dx" + ("a"^2 + "b"^2)"y"`

`= "e"^"ax" [("a"^2 - "b"^2)] sin "bx" + 2"ab" cos "bx" - 2"a" * "e"^"ax" ("b" cos "bx" + "a" sin "bx") + ("a"^2 + "b"^2) * "e"^"ax" sin "bx"`

`= "e"^"ax" [("a"^2 - "b"^2) sin "bx" + 2"ab" cos "bx" - 2"ab" cos "bx" - 2"a"^2 sin "bx" + ("a"^2 + "b"^2) sin "bx"]`

`= "e"^"ax" [("a"^2 - "b"^2) sin "bx" - ("a"^2 - "b"^2) sin "bx"]`

`= "e"^"ax" xx 0 = 0`

Hence. y = `"e"^"ax"` sin bx is a solution of the D.E.

`("d"^2"y")/"dx"^2 - 2"a" "dy"/"dx" + ("a"^2 + "b"^2)"y" = 0`

shaalaa.com
Formation of Differential Equations
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Differential Equations - Miscellaneous exercise 2 [पृष्ठ २१७]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
पाठ 6 Differential Equations
Miscellaneous exercise 2 | Q 2.2 | पृष्ठ २१७

संबंधित प्रश्‍न

Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y2 = (x + c)3


In the following example verify that the given expression is a solution of the corresponding differential equation:

y = `(sin^-1 "x")^2 + "c"; (1 - "x"^2) ("d"^2"y")/"dx"^2 - "x" "dy"/"dx" = 2`


In the following example verify that the given expression is a solution of the corresponding differential equation:

y = xm; `"x"^2 ("d"^2"y")/"dx"^2 - "mx" "dy"/"dx" + "my" = 0`


Solve the following differential equation:

`(cos^2y)/x dy + (cos^2x)/y dx` = 0


Solve the following differential equation:

`"y"^3 - "dy"/"dx" = "x"^2 "dy"/"dx"`


For the following differential equation find the particular solution satisfying the given condition:

`y(1 + log x) dx/dy - x log x = 0, y = e^2,` when x = e


For the following differential equation find the particular solution satisfying the given condition:

`cos("dy"/"dx") = "a", "a" ∈ "R", "y"(0) = 2`


Reduce the following differential equation to the variable separable form and hence solve:

`"dy"/"dx" = cos("x + y")`


Reduce the following differential equation to the variable separable form and hence solve:

`"x + y""dy"/"dx" = sec("x"^2 + "y"^2)`


Reduce the following differential equation to the variable separable form and hence solve:

`cos^2 ("x - 2y") = 1 - 2 "dy"/"dx"`


Choose the correct option from the given alternatives:

`"x"^2/"a"^2 - "y"^2/"b"^2 = 1` is a solution of


In the following example verify that the given function is a solution of the differential equation.

`"x"^2 + "y"^2 = "r"^2; "x" "dy"/"dx" + "r" sqrt(1 + ("dy"/"dx")^2) = "y"`


Solve the following differential equation:

`"dy"/"dx" = "x"^2"y" + "y"`


Solve the following differential equation:

y log y = (log y2 - x) `"dy"/"dx"`


Find the particular solution of the following differential equation:

`"dy"/"dx" - 3"y" cot "x" = sin "2x"`, when `"y"(pi/2) = 2`


Find the particular solution of the following differential equation:

`2e ^(x/y) dx + (y - 2xe^(x/y)) dy = 0," When" y (0) = 1`


Select and write the correct alternative from the given option for the question

Solution of the equation `x  ("d"y)/("d"x)` = y log y is


Select and write the correct alternative from the given option for the question

The solution of `("d"y)/("d"x)` = 1 is


Form the differential equation of family of standard circle


Find the differential equation of family of all ellipse whose major axis is twice the minor axis


The family of curves y = `e^("a" sin x)`, where a is an arbitrary constant, is represented by the differential equation.


Find the differential equation of the family of all non-horizontal lines in a plane 


Find the differential equations of the family of all the ellipses having foci on the y-axis and centre at the origin


The rate of disintegration of a radio active element at time t is proportional to its mass, at the time. Then the time during which the original mass of 1.5 gm. Will disintegrate into its mass of 0.5 gm. is proportional to ______.


If `x^2 y^2 = sin^-1 sqrt(x^2 + y^2) + cos^-1 sqrt(x^2 + y^2)`, then `"dy"/"dx"` = ?


The elimination of the arbitrary constant m from the equation y = emx gives the differential equation ______.


The differential equation representing the family of parabolas having vertex at origin and axis along positive direction of X-axis is ______.


The differential equation of all parabolas whose axis is Y-axis, is ______.


The differential equation of the family of circles touching Y-axis at the origin is ______.


The differential equation of all circles passing through the origin and having their centres on the X-axis is ______.


Solve the differential equation

cos2(x – 2y) = `1 - 2dy/dx`


Form the differential equation whose general solution is y = a cos 2x + b sin 2x.


Find the particular solution of the differential equation `x^2 dy/dx + y^2 = xy dy/dx`, if y = 1 when x = 1.


Solve the differential equation

ex tan y dx + (1 + ex) sec2 y dy = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×