मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Form the differential equation of the hyperbola whose length of transverse and conjugate axes are half of that of the given hyperbola xykx216-y236=k - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Form the differential equation of the hyperbola whose length of transverse and conjugate axes are half of that of the given hyperbola `"x"^2/16 - "y"^2/36 = "k"`.

बेरीज

उत्तर

The equation of the hyperbola is

`"x"^2/16 - "y"^2/36 = "k"` i.e. `"x"^2/"16 k" - "y"^2/"36k" = 1`

Comparing this equation with `"x"^2/"a"^2 - "y"^2/"b"^2 = 1`, we get

a2 = 16k, b2 = 36k 

∴ a = `4sqrt"k", "b" = 6sqrt"k"`

∴ l(transverse axis) = 2a = `8sqrt"k"`

and l(conjugate axis) = 2b = `12sqrt"k"`

Let 2A and 2B be the lengths of the transverse and conjugate axes of the required hyperbola.

Then according to the given condition

2A = a = `4sqrt"k" and 2"B" = "b" = 6sqrt"k"`

∴ A = `2sqrt"k"` and B = `3sqrt"k"`

∴ equation of the required hyperbola is

`"x"^2/"A"^2 - "y"^2/"B"^2 = 1`

i.e. `"x"^2/"4k" - "y"^2/"9k" = 1`

∴ 9x2 - 4y2 = 36k, where k is an arbitrary constant.

Differentiating w.r.t. x, we get

`9 xx "2x" - 4 xx "2y" "dy"/"dx" = 0`

∴ `"9x" - "4y" "dy"/"dx" = 0`

This is the required D.E.

shaalaa.com
Formation of Differential Equations
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Differential Equations - Miscellaneous exercise 2 [पृष्ठ २१७]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
पाठ 6 Differential Equations
Miscellaneous exercise 2 | Q 4.5 | पृष्ठ २१७

संबंधित प्रश्‍न

Obtain the differential equation by eliminating the arbitrary constants from the following equation:

x3 + y3 = 4ax


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = A cos (log x) + B sin (log x)


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y2 = (x + c)3


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = e−2x (A cos x + B sin x)


Form the differential equation of all parabolas whose axis is the X-axis.


In the following example verify that the given expression is a solution of the corresponding differential equation:

y = `"e"^"ax"; "x" "dy"/"dx" = "y" log "y"`


Solve the following differential equation:

`(cos^2y)/x dy + (cos^2x)/y dx` = 0


Solve the following differential equation:

`2"e"^("x + 2y") "dx" - 3"dy" = 0`


For the following differential equation find the particular solution satisfying the given condition:

`y(1 + log x) dx/dy - x log x = 0, y = e^2,` when x = e


For the following differential equation find the particular solution satisfying the given condition:

`cos("dy"/"dx") = "a", "a" ∈ "R", "y"(0) = 2`


Reduce the following differential equation to the variable separable form and hence solve:

(2x - 2y + 3)dx - (x - y + 1)dy = 0, when x = 0, y = 1.


Choose the correct option from the given alternatives:

The solution of `"dy"/"dx" + "y" = cos "x" - sin "x"`


In the following example verify that the given function is a solution of the differential equation.

`"x"^2 + "y"^2 = "r"^2; "x" "dy"/"dx" + "r" sqrt(1 + ("dy"/"dx")^2) = "y"`


Form the differential equation of all the lines which are normal to the line 3x + 2y + 7 = 0.


Solve the following differential equation:

x dy = (x + y + 1) dx


Solve the following differential equation:

y log y = (log y2 - x) `"dy"/"dx"`


Select and write the correct alternative from the given option for the question

Solution of the equation `x  ("d"y)/("d"x)` = y log y is


The general solution of `(dy)/(dx)` = e−x is ______.


Select and write the correct alternative from the given option for the question

The solution of `("d"y)/("d"x)` = 1 is


Find the differential equation of family of lines making equal intercepts on coordinate axes


Find the differential equation by eliminating arbitrary constants from the relation x2 + y2 = 2ax


Find the differential equation by eliminating arbitrary constants from the relation y = (c1 + c2x)ex 


Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0


Form the differential equation of all straight lines touching the circle x2 + y2 = r2


Find the differential equation of the family of circles passing through the origin and having their centres on the x-axis


Find the differential equation of the family of all the parabolas with latus rectum 4a and whose axes are parallel to the x-axis


Find the differential equations of the family of all the ellipses having foci on the y-axis and centre at the origin


Find the differential equation corresponding to the family of curves represented by the equation y = Ae8x + Be 8x, where A and B are arbitrary constants


The differential equation representing the family of parabolas having vertex at origin and axis along positive direction of X-axis is ______.


If m and n are respectively the order and degree of the differential equation of the family of parabolas with focus at the origin and X-axis as its axis, then mn - m + n = ______.


The differential equation whose solution is (x – h)2 + (y – k)2 = a2 is (where a is a constant) ______.


Solve the differential equation

ex tan y dx + (1 + ex) sec2 y dy = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×