Advertisements
Advertisements
प्रश्न
Form the differential equation of the hyperbola whose length of transverse and conjugate axes are half of that of the given hyperbola `"x"^2/16 - "y"^2/36 = "k"`.
उत्तर
The equation of the hyperbola is
`"x"^2/16 - "y"^2/36 = "k"` i.e. `"x"^2/"16 k" - "y"^2/"36k" = 1`
Comparing this equation with `"x"^2/"a"^2 - "y"^2/"b"^2 = 1`, we get
a2 = 16k, b2 = 36k
∴ a = `4sqrt"k", "b" = 6sqrt"k"`
∴ l(transverse axis) = 2a = `8sqrt"k"`
and l(conjugate axis) = 2b = `12sqrt"k"`
Let 2A and 2B be the lengths of the transverse and conjugate axes of the required hyperbola.
Then according to the given condition
2A = a = `4sqrt"k" and 2"B" = "b" = 6sqrt"k"`
∴ A = `2sqrt"k"` and B = `3sqrt"k"`
∴ equation of the required hyperbola is
`"x"^2/"A"^2 - "y"^2/"B"^2 = 1`
i.e. `"x"^2/"4k" - "y"^2/"9k" = 1`
∴ 9x2 - 4y2 = 36k, where k is an arbitrary constant.
Differentiating w.r.t. x, we get
`9 xx "2x" - 4 xx "2y" "dy"/"dx" = 0`
∴ `"9x" - "4y" "dy"/"dx" = 0`
This is the required D.E.
APPEARS IN
संबंधित प्रश्न
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
x3 + y3 = 4ax
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = A cos (log x) + B sin (log x)
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y2 = (x + c)3
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = e−2x (A cos x + B sin x)
Form the differential equation of all parabolas whose axis is the X-axis.
In the following example verify that the given expression is a solution of the corresponding differential equation:
y = `"e"^"ax"; "x" "dy"/"dx" = "y" log "y"`
Solve the following differential equation:
`(cos^2y)/x dy + (cos^2x)/y dx` = 0
Solve the following differential equation:
`2"e"^("x + 2y") "dx" - 3"dy" = 0`
For the following differential equation find the particular solution satisfying the given condition:
`y(1 + log x) dx/dy - x log x = 0, y = e^2,` when x = e
For the following differential equation find the particular solution satisfying the given condition:
`cos("dy"/"dx") = "a", "a" ∈ "R", "y"(0) = 2`
Reduce the following differential equation to the variable separable form and hence solve:
(2x - 2y + 3)dx - (x - y + 1)dy = 0, when x = 0, y = 1.
Choose the correct option from the given alternatives:
The solution of `"dy"/"dx" + "y" = cos "x" - sin "x"`
In the following example verify that the given function is a solution of the differential equation.
`"x"^2 + "y"^2 = "r"^2; "x" "dy"/"dx" + "r" sqrt(1 + ("dy"/"dx")^2) = "y"`
Form the differential equation of all the lines which are normal to the line 3x + 2y + 7 = 0.
Solve the following differential equation:
x dy = (x + y + 1) dx
Solve the following differential equation:
y log y = (log y2 - x) `"dy"/"dx"`
Select and write the correct alternative from the given option for the question
Solution of the equation `x ("d"y)/("d"x)` = y log y is
The general solution of `(dy)/(dx)` = e−x is ______.
Select and write the correct alternative from the given option for the question
The solution of `("d"y)/("d"x)` = 1 is
Find the differential equation of family of lines making equal intercepts on coordinate axes
Find the differential equation by eliminating arbitrary constants from the relation x2 + y2 = 2ax
Find the differential equation by eliminating arbitrary constants from the relation y = (c1 + c2x)ex
Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0
Form the differential equation of all straight lines touching the circle x2 + y2 = r2
Find the differential equation of the family of circles passing through the origin and having their centres on the x-axis
Find the differential equation of the family of all the parabolas with latus rectum 4a and whose axes are parallel to the x-axis
Find the differential equations of the family of all the ellipses having foci on the y-axis and centre at the origin
Find the differential equation corresponding to the family of curves represented by the equation y = Ae8x + Be –8x, where A and B are arbitrary constants
The differential equation representing the family of parabolas having vertex at origin and axis along positive direction of X-axis is ______.
If m and n are respectively the order and degree of the differential equation of the family of parabolas with focus at the origin and X-axis as its axis, then mn - m + n = ______.
The differential equation whose solution is (x – h)2 + (y – k)2 = a2 is (where a is a constant) ______.
Solve the differential equation
ex tan y dx + (1 + ex) sec2 y dy = 0