मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

For the following differential equation find the particular solution satisfying the given condition: 3ex tan y dx + (1 + ex) sec2 y dy = 0, when x = 0, y = π. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

For the following differential equation find the particular solution satisfying the given condition:

3ex tan y dx + (1 + ex) sec2 y dy = 0, when x = 0, y = π.

बेरीज

उत्तर

3ex tan y dx + (1 + ex) sec2 y dy = 0, when x = 0, y = π.

∴`(3"e"^"x")/(1 + "e"^x)  "dx" + ("sec"^2"y")/("tan y") "dy" = 0`

Integrating both sides, we get

`3 int "e"^"x"/(1 + "e"^"x") "dx" + int (sec^2"y")/(tan "y") "dy" = "c"_1`

Each of these integrals is of the type

`int ("f"'("x"))/("f"("x")) "dx" = log |"f"(x)| + "c"`

∴ the general solution is

3 log |1 + ex| + log |tan y| = log c, where c1 =log c

∴ log |(1 + ex)3 * tan y| = log c 

∴ (1 + ex)3 tan y = c

When x = 0, y = π, we have

(1 + e0)3 tan π = c

∴ c = 0

∴ the particular solution is (1 + ex)3 tan y = 0

shaalaa.com
Formation of Differential Equations
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Differential Equations - Exercise 6.3 [पृष्ठ २०१]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
पाठ 6 Differential Equations
Exercise 6.3 | Q 3.1 | पृष्ठ २०१

संबंधित प्रश्‍न

Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y2 = (x + c)3


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = Ae5x + Be-5x 


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = a + `"a"/"x"`


Form the differential equation of family of lines having intercepts a and b on the co-ordinate ares respectively.


Find the differential equation of all circles having radius 9 and centre at point (h, k).


Form the differential equation of all parabolas whose axis is the X-axis.


In the following example verify that the given expression is a solution of the corresponding differential equation:

xy = log y +c; `"dy"/"dx" = "y"^2/(1 - "xy")`


In the following example verify that the given expression is a solution of the corresponding differential equation:

y = `"a" + "b"/"x"; "x" ("d"^2"y")/"dx"^2 + 2 "dy"/"dx" = 0`


In the following example verify that the given expression is a solution of the corresponding differential equation:

y = `"e"^"ax"; "x" "dy"/"dx" = "y" log "y"`


Solve the following differential equation:

cos x . cos y dy − sin x . sin y dx = 0


Solve the following differential equation:

`"dy"/"dx" = "e"^("x + y") + "x"^2 "e"^"y"`


For the following differential equation find the particular solution satisfying the given condition:

`y(1 + log x) dx/dy - x log x = 0, y = e^2,` when x = e


Solve the following differential equation:

(x2 + y2)dx - 2xy dy = 0


Choose the correct option from the given alternatives:

The differential equation of y = `"c"^2 + "c"/"x"` is


Choose the correct option from the given alternatives:

The solution of `"dy"/"dx" + "y" = cos "x" - sin "x"`


The particular solution of `dy/dx = xe^(y - x)`, when x = y = 0 is ______.


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

`"y"^2 = "a"("b - x")("b + x")`


In the following example verify that the given function is a solution of the differential equation.

`"x"^2 + "y"^2 = "r"^2; "x" "dy"/"dx" + "r" sqrt(1 + ("dy"/"dx")^2) = "y"`


In the following example verify that the given function is a solution of the differential equation.

`"xy" = "ae"^"x" + "be"^-"x" + "x"^2; "x" ("d"^2"y")/"dx"^2 + 2 "dy"/"dx" + "x"^2 = "xy" + 2`


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

(y - a)2 = b(x + 4)


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = `sqrt("a" cos (log "x") + "b" sin (log "x"))`


Solve the following differential equation:

`"dy"/"dx" = "x"^2"y" + "y"`


Solve the following differential equation:

x dy = (x + y + 1) dx


Solve the following differential equation:

y log y = (log y2 - x) `"dy"/"dx"`


Find the particular solution of the following differential equation:

`("x + 2y"^2) "dy"/"dx" = "y",` when x = 2, y = 1


The general solution of `(dy)/(dx)` = e−x is ______.


Select and write the correct alternative from the given option for the question

General solution of `y - x ("d"y)/("d"x)` = 0 is


Find the general solution of `("d"y)/("d"x) = (1 + y^2)/(1 + x^2)`


Find the differential equation from the relation x2 + 4y2 = 4b2 


Form the differential equation of all straight lines touching the circle x2 + y2 = r2


Choose the correct alternative:

The slope at any point of a curve y = f(x) is given by `("d"y)/("d"x) - 3x^2` and it passes through (-1, 1). Then the equation of the curve is


If `x^2 y^2 = sin^-1 sqrt(x^2 + y^2) + cos^-1 sqrt(x^2 + y^2)`, then `"dy"/"dx"` = ?


The elimination of the arbitrary constant m from the equation y = emx gives the differential equation ______.


The differential equation whose solution is (x – h)2 + (y – k)2 = a2 is (where a is a constant) ______.


For the curve C: (x2 + y2 – 3) + (x2 – y2 – 1)5 = 0, the value of 3y' – y3 y", at the point (α, α), α < 0, on C, is equal to ______.


The differential equation of all parabolas whose axis is Y-axis, is ______.


The differential equation of the family of circles touching Y-axis at the origin is ______.


A particle is moving along the X-axis. Its acceleration at time t is proportional to its velocity at that time. Find the differential equation of the motion of the particle.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×