Advertisements
Advertisements
प्रश्न
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
(y - a)2 = b(x + 4)
उत्तर
(y - a)2 = b(x + 4) ....(1)
Differentiating both sides w.r.t. x, we get
`2("y - a") * "d"/"dx"("y - a") = "b" "d"/"dx" ("x + 4")`
∴ `2("y - a") * ("dy"/"dx" - 0) = "b"(1 + 0)`
∴ `2("y - a") "dy"/"dx" = "b"`
∴ `2("y - a") "dy"/"dx" = ("y - a")^2/("x + 4")` ....[By (1)]
`2 ("x + 4") "dy"/"dx" = "y - a"`
Differentiating again w.r.t. x, we get
`2 [("x + 4") * "d"/"dx"("dy"/"dx") + "dy"/"dx" * "d"/"dx" ("x + 4")] = "dy"/"dx" - 0`
∴ `2 [("x + 4") ("d"^2"y")/"dx"^2 + "dy"/"dx" xx (1 + 0)] = "dy"/"dx"`
∴ `2("x + 4") ("d"^2"y")/"dx"^2 + 2 "dy"/"dx" - "dy"/"dx" = 0`
∴ `2("x + 4") ("d"^2"y")/"dx"^2 + "dy"/"dx" = 0`
This is the required D.E.
Notes
The answer in the textbook is incorrect.
APPEARS IN
संबंधित प्रश्न
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
(y - a)2 = 4(x - b)
In the following example verify that the given expression is a solution of the corresponding differential equation:
xy = log y +c; `"dy"/"dx" = "y"^2/(1 - "xy")`
In the following example verify that the given expression is a solution of the corresponding differential equation:
y = `(sin^-1 "x")^2 + "c"; (1 - "x"^2) ("d"^2"y")/"dx"^2 - "x" "dy"/"dx" = 2`
In the following example verify that the given expression is a solution of the corresponding differential equation:
y = xm; `"x"^2 ("d"^2"y")/"dx"^2 - "mx" "dy"/"dx" + "my" = 0`
In the following example verify that the given expression is a solution of the corresponding differential equation:
y = `"a" + "b"/"x"; "x" ("d"^2"y")/"dx"^2 + 2 "dy"/"dx" = 0`
Solve the following differential equation:
`"dy"/"dx" = - "k",` where k is a constant.
Solve the following differential equation:
`2"e"^("x + 2y") "dx" - 3"dy" = 0`
Solve the following differential equation:
`"dy"/"dx" = "e"^("x + y") + "x"^2 "e"^"y"`
For the following differential equation find the particular solution satisfying the given condition:
3ex tan y dx + (1 + ex) sec2 y dy = 0, when x = 0, y = π.
For the following differential equation find the particular solution satisfying the given condition:
`y(1 + log x) dx/dy - x log x = 0, y = e^2,` when x = e
For the following differential equation find the particular solution satisfying the given condition:
`(e^y + 1) cos x + e^y sin x. dy/dx = 0, "when" x = pi/6,` y = 0
For the following differential equation find the particular solution satisfying the given condition:
`("x" + 1) "dy"/"dx" - 1 = 2"e"^-"y" , "y" = 0`, when x = 1
Reduce the following differential equation to the variable separable form and hence solve:
`cos^2 ("x - 2y") = 1 - 2 "dy"/"dx"`
Choose the correct option from the given alternatives:
`"x"^2/"a"^2 - "y"^2/"b"^2 = 1` is a solution of
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
`"y"^2 = "a"("b - x")("b + x")`
In the following example verify that the given function is a solution of the differential equation.
`"y" = 3 "cos" (log "x") + 4 sin (log "x"); "x"^2 ("d"^2"y")/"dx"^2 + "x" "dy"/"dx" + "y" = 0`
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = `"Ae"^(3"x" + 1) + "Be"^(- 3"x" + 1)`
Form the differential equation of the hyperbola whose length of transverse and conjugate axes are half of that of the given hyperbola `"x"^2/16 - "y"^2/36 = "k"`.
Find the particular solution of the following differential equation:
`"dy"/"dx" - 3"y" cot "x" = sin "2x"`, when `"y"(pi/2) = 2`
Select and write the correct alternative from the given option for the question
Solution of the equation `x ("d"y)/("d"x)` = y log y is
Find the general solution of `("d"y)/("d"x) = (1 + y^2)/(1 + x^2)`
Form the differential equation of family of standard circle
Find the differential equation of the family of all non-vertical lines in a plane
Find the differential equation of the family of all the parabolas with latus rectum 4a and whose axes are parallel to the x-axis
Find the differential equation of the curve represented by xy = aex + be–x + x2
Choose the correct alternative:
The slope at any point of a curve y = f(x) is given by `("d"y)/("d"x) - 3x^2` and it passes through (-1, 1). Then the equation of the curve is
The rate of disintegration of a radio active element at time t is proportional to its mass, at the time. Then the time during which the original mass of 1.5 gm. Will disintegrate into its mass of 0.5 gm. is proportional to ______.
The general solution of the differential equation of all circles having centre at A(- 1, 2) is ______.
Form the differential equation of all lines which makes intercept 3 on x-axis.
For the curve C: (x2 + y2 – 3) + (x2 – y2 – 1)5 = 0, the value of 3y' – y3 y", at the point (α, α), α < 0, on C, is equal to ______.
The differential equation of the family of circles touching Y-axis at the origin is ______.
Solve the differential equation
cos2(x – 2y) = `1 - 2dy/dx`
Find the particular solution of the differential equation `x^2 dy/dx + y^2 = xy dy/dx`, if y = 1 when x = 1.
Form the differential equation of all concentric circles having centre at the origin.